2020-03-04 13:00:37 -08:00
|
|
|
from typing import Union
|
|
|
|
|
2020-02-19 21:18:45 +01:00
|
|
|
from ray.rllib.utils.annotations import override
|
|
|
|
from ray.rllib.utils.exploration.exploration import Exploration
|
2020-03-04 13:00:37 -08:00
|
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch, \
|
|
|
|
TensorType
|
2020-02-19 21:18:45 +01:00
|
|
|
from ray.rllib.utils.tuple_actions import TupleActions
|
2020-03-04 13:00:37 -08:00
|
|
|
from ray.rllib.models.modelv2 import ModelV2
|
2020-02-19 21:18:45 +01:00
|
|
|
|
|
|
|
tf = try_import_tf()
|
|
|
|
torch, _ = try_import_torch()
|
|
|
|
|
|
|
|
|
|
|
|
class StochasticSampling(Exploration):
|
|
|
|
"""An exploration that simply samples from a distribution.
|
|
|
|
|
|
|
|
The sampling can be made deterministic by passing explore=False into
|
|
|
|
the call to `get_exploration_action`.
|
|
|
|
Also allows for scheduled parameters for the distributions, such as
|
|
|
|
lowering stddev, temperature, etc.. over time.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
action_space,
|
2020-03-01 20:53:35 +01:00
|
|
|
*,
|
2020-02-19 21:18:45 +01:00
|
|
|
static_params=None,
|
|
|
|
time_dependent_params=None,
|
2020-03-01 20:53:35 +01:00
|
|
|
framework="tf",
|
2020-02-19 21:18:45 +01:00
|
|
|
**kwargs):
|
|
|
|
"""Initializes a StochasticSampling Exploration object.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
action_space (Space): The gym action space used by the environment.
|
|
|
|
static_params (Optional[dict]): Parameters to be passed as-is into
|
|
|
|
the action distribution class' constructor.
|
|
|
|
time_dependent_params (dict): Parameters to be evaluated based on
|
|
|
|
`timestep` and then passed into the action distribution
|
|
|
|
class' constructor.
|
2020-03-01 20:53:35 +01:00
|
|
|
framework (Optional[str]): One of None, "tf", "torch".
|
2020-02-19 21:18:45 +01:00
|
|
|
"""
|
|
|
|
assert framework is not None
|
2020-03-01 20:53:35 +01:00
|
|
|
super().__init__(action_space, framework=framework, **kwargs)
|
2020-02-19 21:18:45 +01:00
|
|
|
|
|
|
|
self.static_params = static_params or {}
|
|
|
|
|
|
|
|
# TODO(sven): Support scheduled params whose values depend on timestep
|
|
|
|
# and that will be passed into the distribution's c'tor.
|
|
|
|
self.time_dependent_params = time_dependent_params or {}
|
|
|
|
|
|
|
|
@override(Exploration)
|
|
|
|
def get_exploration_action(self,
|
2020-03-04 13:00:37 -08:00
|
|
|
distribution_inputs: TensorType,
|
|
|
|
action_dist_class: type,
|
|
|
|
model: ModelV2,
|
|
|
|
timestep: Union[int, TensorType],
|
|
|
|
explore: bool = True):
|
2020-02-19 21:18:45 +01:00
|
|
|
kwargs = self.static_params.copy()
|
|
|
|
|
|
|
|
# TODO(sven): create schedules for these via easy-config patterns
|
|
|
|
# These can be used anywhere in configs, where schedules are wanted:
|
|
|
|
# e.g. lr=[0.003, 0.00001, 100k] <- linear anneal from 0.003, to
|
|
|
|
# 0.00001 over 100k ts.
|
|
|
|
# if self.time_dependent_params:
|
|
|
|
# for k, v in self.time_dependent_params:
|
|
|
|
# kwargs[k] = v(timestep)
|
2020-02-22 23:19:49 +01:00
|
|
|
action_dist = action_dist_class(distribution_inputs, model, **kwargs)
|
2020-02-19 21:18:45 +01:00
|
|
|
|
|
|
|
if self.framework == "torch":
|
|
|
|
return self._get_torch_exploration_action(action_dist, explore)
|
|
|
|
else:
|
|
|
|
return self._get_tf_exploration_action_op(action_dist, explore)
|
|
|
|
|
2020-02-22 20:02:31 +01:00
|
|
|
def _get_tf_exploration_action_op(self, action_dist, explore):
|
|
|
|
sample = action_dist.sample()
|
|
|
|
deterministic_sample = action_dist.deterministic_sample()
|
|
|
|
action = tf.cond(
|
|
|
|
tf.constant(explore) if isinstance(explore, bool) else explore,
|
|
|
|
true_fn=lambda: sample,
|
|
|
|
false_fn=lambda: deterministic_sample)
|
|
|
|
|
|
|
|
def logp_false_fn():
|
2020-02-19 21:18:45 +01:00
|
|
|
# TODO(sven): Move into (deterministic_)sample(logp=True|False)
|
2020-02-22 20:02:31 +01:00
|
|
|
if isinstance(sample, TupleActions):
|
|
|
|
batch_size = tf.shape(action[0])[0]
|
2020-02-19 21:18:45 +01:00
|
|
|
else:
|
|
|
|
batch_size = tf.shape(action)[0]
|
2020-02-22 20:02:31 +01:00
|
|
|
return tf.zeros(shape=(batch_size, ), dtype=tf.float32)
|
|
|
|
|
|
|
|
logp = tf.cond(
|
|
|
|
tf.constant(explore) if isinstance(explore, bool) else explore,
|
|
|
|
true_fn=lambda: action_dist.sampled_action_logp(),
|
|
|
|
false_fn=logp_false_fn)
|
|
|
|
|
|
|
|
return TupleActions(action) if isinstance(sample, TupleActions) \
|
|
|
|
else action, logp
|
2020-02-19 21:18:45 +01:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def _get_torch_exploration_action(action_dist, explore):
|
|
|
|
if explore:
|
|
|
|
action = action_dist.sample()
|
|
|
|
logp = action_dist.sampled_action_logp()
|
|
|
|
else:
|
|
|
|
action = action_dist.deterministic_sample()
|
|
|
|
logp = torch.zeros((action.size()[0], ), dtype=torch.float32)
|
|
|
|
return action, logp
|