ray/rllib/examples/custom_metrics_and_callbacks.py

124 lines
5.1 KiB
Python
Raw Normal View History

"""Example of using RLlib's debug callbacks.
Here we use callbacks to track the average CartPole pole angle magnitude as a
custom metric.
"""
from typing import Dict
import argparse
import numpy as np
import os
import ray
from ray import tune
from ray.rllib.agents.callbacks import DefaultCallbacks
from ray.rllib.env import BaseEnv
from ray.rllib.evaluation import MultiAgentEpisode, RolloutWorker
from ray.rllib.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
parser = argparse.ArgumentParser()
parser.add_argument("--torch", action="store_true")
parser.add_argument("--stop-iters", type=int, default=2000)
class MyCallbacks(DefaultCallbacks):
def on_episode_start(self, *, worker: RolloutWorker, base_env: BaseEnv,
policies: Dict[str, Policy],
episode: MultiAgentEpisode, env_index: int, **kwargs):
# Make sure this episode has just been started (only initial obs
# logged so far).
assert episode.length == 0, \
"ERROR: `on_episode_start()` callback should be called right " \
"after env reset!"
print("episode {} (env-idx={}) started.".format(
episode.episode_id, env_index))
episode.user_data["pole_angles"] = []
episode.hist_data["pole_angles"] = []
def on_episode_step(self, *, worker: RolloutWorker, base_env: BaseEnv,
episode: MultiAgentEpisode, env_index: int, **kwargs):
# Make sure this episode is ongoing.
assert episode.length > 0, \
"ERROR: `on_episode_step()` callback should not be called right " \
"after env reset!"
pole_angle = abs(episode.last_observation_for()[2])
raw_angle = abs(episode.last_raw_obs_for()[2])
assert pole_angle == raw_angle
episode.user_data["pole_angles"].append(pole_angle)
def on_episode_end(self, *, worker: RolloutWorker, base_env: BaseEnv,
policies: Dict[str, Policy], episode: MultiAgentEpisode,
env_index: int, **kwargs):
# Make sure this episode is really done.
assert episode.batch_builder.policy_collectors[
"default_policy"].buffers["dones"][-1], \
"ERROR: `on_episode_end()` should only be called " \
"after episode is done!"
pole_angle = np.mean(episode.user_data["pole_angles"])
print("episode {} (env-idx={}) ended with length {} and pole "
"angles {}".format(episode.episode_id, env_index, episode.length,
pole_angle))
episode.custom_metrics["pole_angle"] = pole_angle
episode.hist_data["pole_angles"] = episode.user_data["pole_angles"]
def on_sample_end(self, *, worker: RolloutWorker, samples: SampleBatch,
**kwargs):
print("returned sample batch of size {}".format(samples.count))
def on_train_result(self, *, trainer, result: dict, **kwargs):
print("trainer.train() result: {} -> {} episodes".format(
trainer, result["episodes_this_iter"]))
# you can mutate the result dict to add new fields to return
result["callback_ok"] = True
def on_learn_on_batch(self, *, policy: Policy, train_batch: SampleBatch,
result: dict, **kwargs) -> None:
result["sum_actions_in_train_batch"] = np.sum(train_batch["actions"])
print("policy.learn_on_batch() result: {} -> sum actions: {}".format(
policy, result["sum_actions_in_train_batch"]))
def on_postprocess_trajectory(
self, *, worker: RolloutWorker, episode: MultiAgentEpisode,
agent_id: str, policy_id: str, policies: Dict[str, Policy],
postprocessed_batch: SampleBatch,
original_batches: Dict[str, SampleBatch], **kwargs):
print("postprocessed {} steps".format(postprocessed_batch.count))
if "num_batches" not in episode.custom_metrics:
episode.custom_metrics["num_batches"] = 0
episode.custom_metrics["num_batches"] += 1
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
trials = tune.run(
"PG",
stop={
"training_iteration": args.stop_iters,
},
config={
"env": "CartPole-v0",
"num_envs_per_worker": 2,
"callbacks": MyCallbacks,
"framework": "torch" if args.torch else "tf",
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
2020-09-05 15:34:53 -07:00
}).trials
# Verify episode-related custom metrics are there.
custom_metrics = trials[0].last_result["custom_metrics"]
print(custom_metrics)
assert "pole_angle_mean" in custom_metrics
assert "pole_angle_min" in custom_metrics
assert "pole_angle_max" in custom_metrics
assert "num_batches_mean" in custom_metrics
assert "callback_ok" in trials[0].last_result
# Verify `on_learn_on_batch` custom metrics are there (per policy).
if args.torch:
info_custom_metrics = custom_metrics["default_policy"]
print(info_custom_metrics)
assert "sum_actions_in_train_batch" in info_custom_metrics