mirror of
https://github.com/vale981/ray
synced 2025-03-09 12:56:46 -04:00
66 lines
2.4 KiB
Python
66 lines
2.4 KiB
Python
![]() |
import logging
|
||
|
|
||
|
import ray
|
||
|
from ray.rllib.policy.torch_policy_template import build_torch_policy
|
||
|
from ray.rllib.agents.ppo.ppo_tf_policy import postprocess_ppo_gae, \
|
||
|
setup_config
|
||
|
from ray.rllib.agents.ppo.ppo_torch_policy import vf_preds_fetches
|
||
|
from ray.rllib.agents.a3c.a3c_torch_policy import apply_grad_clipping
|
||
|
from ray.rllib.utils.framework import try_import_torch
|
||
|
from ray.rllib.models.catalog import ModelCatalog
|
||
|
from ray.rllib.agents.maml.maml_torch_policy import setup_mixins, \
|
||
|
maml_loss, maml_stats, maml_optimizer_fn, KLCoeffMixin
|
||
|
|
||
|
torch, nn = try_import_torch()
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def make_model_and_action_dist(policy, obs_space, action_space, config):
|
||
|
# Get the output distribution class for predicting rewards and next-obs.
|
||
|
policy.distr_cls_next_obs, num_outputs = ModelCatalog.get_action_dist(
|
||
|
obs_space, config, dist_type="deterministic", framework="torch")
|
||
|
|
||
|
# Build one dynamics model if we are a Worker.
|
||
|
# If we are the main MAML learner, build n (num_workers) dynamics Models
|
||
|
# for being able to create checkpoints for the current state of training.
|
||
|
device = (torch.device("cuda")
|
||
|
if torch.cuda.is_available() else torch.device("cpu"))
|
||
|
policy.dynamics_model = ModelCatalog.get_model_v2(
|
||
|
obs_space,
|
||
|
action_space,
|
||
|
num_outputs=num_outputs,
|
||
|
model_config=config["dynamics_model"],
|
||
|
framework="torch",
|
||
|
name="dynamics_ensemble",
|
||
|
).to(device)
|
||
|
|
||
|
action_dist, num_outputs = ModelCatalog.get_action_dist(
|
||
|
action_space, config, framework="torch")
|
||
|
# Create the pi-model and register it with the Policy.
|
||
|
policy.pi = ModelCatalog.get_model_v2(
|
||
|
obs_space,
|
||
|
action_space,
|
||
|
num_outputs=num_outputs,
|
||
|
model_config=config["model"],
|
||
|
framework="torch",
|
||
|
name="policy_model",
|
||
|
)
|
||
|
|
||
|
return policy.pi, action_dist
|
||
|
|
||
|
|
||
|
MBMPOTorchPolicy = build_torch_policy(
|
||
|
name="MBMPOTorchPolicy",
|
||
|
get_default_config=lambda: ray.rllib.agents.mbmpo.mbmpo.DEFAULT_CONFIG,
|
||
|
make_model_and_action_dist=make_model_and_action_dist,
|
||
|
loss_fn=maml_loss,
|
||
|
stats_fn=maml_stats,
|
||
|
optimizer_fn=maml_optimizer_fn,
|
||
|
extra_action_out_fn=vf_preds_fetches,
|
||
|
postprocess_fn=postprocess_ppo_gae,
|
||
|
extra_grad_process_fn=apply_grad_clipping,
|
||
|
before_init=setup_config,
|
||
|
after_init=setup_mixins,
|
||
|
mixins=[KLCoeffMixin])
|