ray/doc/source/tune/doc_code/faq.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

378 lines
8.9 KiB
Python
Raw Normal View History

# flake8: noqa
# __reproducible_start__
import numpy as np
from ray import tune
from ray.air import session
def train(config):
# Set seed for trainable random result.
# If you remove this line, you will get different results
# each time you run the trial, even if the configuration
# is the same.
np.random.seed(config["seed"])
random_result = np.random.uniform(0, 100, size=1).item()
session.report({"result": random_result})
# Set seed for Ray Tune's random search.
# If you remove this line, you will get different configurations
# each time you run the script.
np.random.seed(1234)
tuner = tune.Tuner(
train,
tune_config=tune.TuneConfig(
num_samples=10,
search_alg=tune.search.BasicVariantGenerator(),
),
param_space={"seed": tune.randint(0, 1000)},
)
tuner.fit()
# __reproducible_end__
# __basic_config_start__
config = {"a": {"x": tune.uniform(0, 10)}, "b": tune.choice([1, 2, 3])}
# __basic_config_end__
# __conditional_spaces_start__
config = {
"a": tune.randint(5, 10),
"b": tune.sample_from(lambda spec: np.random.randint(0, spec.config.a)),
}
# __conditional_spaces_end__
# __iter_start__
def _iter():
for a in range(5, 10):
for b in range(a):
yield a, b
config = {
"ab": tune.grid_search(list(_iter())),
}
# __iter_end__
def train(config):
random_result = np.random.uniform(0, 100, size=1).item()
session.report({"result": random_result})
train_fn = train
MOCK = True
# Note we put this check here to make sure at least the syntax of
# the code is correct. Some of these snippets simply can't be run on the nose.
if not MOCK:
# __resources_start__
tuner = tune.Tuner(
tune.with_resources(
train_fn, resources={"cpu": 2, "gpu": 0.5, "custom_resources": {"hdd": 80}}
),
)
tuner.fit()
# __resources_end__
# __resources_pgf_start__
tuner = tune.Tuner(
tune.with_resources(
train_fn,
resources=tune.PlacementGroupFactory(
[
{"CPU": 2, "GPU": 0.5, "hdd": 80},
{"CPU": 1},
{"CPU": 1},
],
strategy="PACK",
),
)
)
tuner.fit()
# __resources_pgf_end__
metric = None
# __modin_start__
def train_fn(config, checkpoint_dir=None):
# some Modin operations here
# import modin.pandas as pd
session.report({"metric": metric})
tuner = tune.Tuner(
tune.with_resources(
train_fn,
resources=tune.PlacementGroupFactory(
[
{"CPU": 1}, # this bundle will be used by the trainable itself
{"CPU": 1}, # this bundle will be used by Modin
],
strategy="PACK",
),
)
)
tuner.fit()
# __modin_end__
# __huge_data_start__
from ray import tune
import numpy as np
def train(config, checkpoint_dir=None, num_epochs=5, data=None):
for i in range(num_epochs):
for sample in data:
# ... train on sample
pass
# Some huge dataset
data = np.random.random(size=100000000)
tuner = tune.Tuner(tune.with_parameters(train, num_epochs=5, data=data))
tuner.fit()
# __huge_data_end__
# __seeded_1_start__
import random
random.seed(1234)
output = [random.randint(0, 100) for _ in range(10)]
# The output will always be the same.
assert output == [99, 56, 14, 0, 11, 74, 4, 85, 88, 10]
# __seeded_1_end__
# __seeded_2_start__
# This should suffice to initialize the RNGs for most Python-based libraries
import random
import numpy as np
random.seed(1234)
np.random.seed(5678)
# __seeded_2_end__
# __torch_tf_seeds_start__
import torch
torch.manual_seed(0)
import tensorflow as tf
tf.random.set_seed(0)
# __torch_tf_seeds_end__
# __torch_seed_example_start__
import random
import numpy as np
from ray import tune
def trainable(config):
# config["seed"] is set deterministically, but differs between training runs
random.seed(config["seed"])
np.random.seed(config["seed"])
# torch.manual_seed(config["seed"])
# ... training code
config = {
"seed": tune.randint(0, 10000),
# ...
}
if __name__ == "__main__":
# Set seed for the search algorithms/schedulers
random.seed(1234)
np.random.seed(1234)
# Don't forget to check if the search alg has a `seed` parameter
tuner = tune.Tuner(trainable, param_space=config)
tuner.fit()
# __torch_seed_example_end__
# __large_data_start__
from ray import tune, air
import numpy as np
def f(config, data=None):
pass
# use data
data = np.random.random(size=100000000)
tuner = tune.Tuner(tune.with_parameters(f, data=data))
tuner.fit()
# __large_data_end__
MyTrainableClass = None
if not MOCK:
# __log_1_start__
tuner = tune.Tuner(
MyTrainableClass,
sync_config=tune.SyncConfig(upload_dir="s3://my-log-dir"),
)
tuner.fit()
# __log_1_end__
# __log_2_start__
from ray.tune.syncer import Syncer
class CustomSyncer(Syncer):
def sync_up(
self, local_dir: str, remote_dir: str, exclude: list = None
) -> bool:
pass # sync up
def sync_down(
self, remote_dir: str, local_dir: str, exclude: list = None
) -> bool:
pass # sync down
def delete(self, remote_dir: str) -> bool:
pass # delete
tuner = tune.Tuner(
MyTrainableClass,
sync_config=tune.SyncConfig(
upload_dir="s3://my-log-dir", syncer=CustomSyncer()
),
)
tuner.fit()
# __log_2_end__
# __custom_command_syncer_start__
import subprocess
from ray.tune.syncer import Syncer
class CustomCommandSyncer(Syncer):
def __init__(
self,
sync_up_template: str,
sync_down_template: str,
delete_template: str,
sync_period: float = 300.0,
):
self.sync_up_template = sync_up_template
self.sync_down_template = sync_down_template
self.delete_template = delete_template
super().__init__(sync_period=sync_period)
def sync_up(
self, local_dir: str, remote_dir: str, exclude: list = None
) -> bool:
cmd_str = self.sync_up_template.format(
source=local_dir,
target=remote_dir,
)
subprocess.check_call(cmd_str, shell=True)
return True
def sync_down(
self, remote_dir: str, local_dir: str, exclude: list = None
) -> bool:
cmd_str = self.sync_down_template.format(
source=remote_dir,
local_dir=local_dir,
)
subprocess.check_call(cmd_str, shell=True)
return True
def delete(self, remote_dir: str) -> bool:
cmd_str = self.delete_template.format(
target=remote_dir,
)
subprocess.check_call(cmd_str, shell=True)
return True
def retry(self):
raise NotImplementedError
def wait(self):
pass
sync_config = tune.SyncConfig(
syncer=CustomCommandSyncer(
sync_up_template="aws s3 sync {source} {target}",
sync_down_template="aws s3 sync {source} {target}",
delete_template="aws s3 rm {target} --recursive",
),
upload_dir="s3://bucket/path",
)
# __custom_command_syncer_end__
if not MOCK:
# __s3_start__
from ray import tune
tuner = tune.Tuner(
train_fn,
# ...,
sync_config=tune.SyncConfig(upload_dir="s3://your-s3-bucket/durable-trial/"),
)
tuner.fit()
# __s3_end__
# __sync_config_start__
from ray import air, tune
tuner = tune.Tuner(
train_fn,
run_config=air.RunConfig(
local_dir="/path/to/shared/storage",
),
sync_config=tune.SyncConfig(
# Do not sync because we are on shared storage
syncer=None
),
)
tuner.fit()
# __sync_config_end__
import ray
ray.shutdown()
# __grid_search_start__
parameters = {
"qux": tune.sample_from(lambda spec: 2 + 2),
"bar": tune.grid_search([True, False]),
"foo": tune.grid_search([1, 2, 3]),
"baz": "asd", # a constant value
}
tuner = tune.Tuner(train_fn, param_space=parameters)
tuner.fit()
# __grid_search_end__
# __grid_search_2_start__
# num_samples=10 repeats the 3x3 grid search 10 times, for a total of 90 trials
tuner = tune.Tuner(
train_fn,
run_config=air.RunConfig(
name="my_trainable",
),
param_space={
"alpha": tune.uniform(100, 200),
"beta": tune.sample_from(lambda spec: spec.config.alpha * np.random.normal()),
"nn_layers": [
tune.grid_search([16, 64, 256]),
tune.grid_search([16, 64, 256]),
],
},
tune_config=tune.TuneConfig(
num_samples=10,
),
)
# __grid_search_2_end__