2022-05-02 21:15:50 +02:00
|
|
|
from ray.rllib.offline.off_policy_estimator import OffPolicyEstimator, OffPolicyEstimate
|
2022-05-24 22:14:25 -07:00
|
|
|
from ray.rllib.utils.annotations import override, DeveloperAPI
|
2022-05-02 21:15:50 +02:00
|
|
|
from ray.rllib.utils.typing import SampleBatchType
|
|
|
|
|
|
|
|
|
2022-05-24 22:14:25 -07:00
|
|
|
@DeveloperAPI
|
2022-05-02 21:15:50 +02:00
|
|
|
class ImportanceSampling(OffPolicyEstimator):
|
|
|
|
"""The step-wise IS estimator.
|
|
|
|
|
|
|
|
Step-wise IS estimator described in https://arxiv.org/pdf/1511.03722.pdf"""
|
|
|
|
|
|
|
|
@override(OffPolicyEstimator)
|
|
|
|
def estimate(self, batch: SampleBatchType) -> OffPolicyEstimate:
|
|
|
|
self.check_can_estimate_for(batch)
|
|
|
|
|
|
|
|
rewards, old_prob = batch["rewards"], batch["action_prob"]
|
|
|
|
new_prob = self.action_log_likelihood(batch)
|
|
|
|
|
|
|
|
# calculate importance ratios
|
|
|
|
p = []
|
|
|
|
for t in range(batch.count):
|
|
|
|
if t == 0:
|
|
|
|
pt_prev = 1.0
|
|
|
|
else:
|
|
|
|
pt_prev = p[t - 1]
|
|
|
|
p.append(pt_prev * new_prob[t] / old_prob[t])
|
|
|
|
|
|
|
|
# calculate stepwise IS estimate
|
|
|
|
V_prev, V_step_IS = 0.0, 0.0
|
|
|
|
for t in range(batch.count):
|
|
|
|
V_prev += rewards[t] * self.gamma ** t
|
|
|
|
V_step_IS += p[t] * rewards[t] * self.gamma ** t
|
|
|
|
|
|
|
|
estimation = OffPolicyEstimate(
|
|
|
|
"importance_sampling",
|
|
|
|
{
|
|
|
|
"V_prev": V_prev,
|
|
|
|
"V_step_IS": V_step_IS,
|
|
|
|
"V_gain_est": V_step_IS / max(1e-8, V_prev),
|
|
|
|
},
|
|
|
|
)
|
|
|
|
return estimation
|