ray/rllib/examples/curriculum_learning.py

124 lines
4.2 KiB
Python
Raw Normal View History

"""
Example of a curriculum learning setup using the `TaskSettableEnv` API
and the env_task_fn config.
This example shows:
- Writing your own curriculum-capable environment using gym.Env.
- Defining a env_task_fn that determines, whether and which new task
the env(s) should be set to (using the TaskSettableEnv API).
- Using Tune and RLlib to curriculum-learn this env.
You can visualize experiment results in ~/ray_results using TensorBoard.
"""
import argparse
import numpy as np
import os
import ray
from ray import tune
from ray.rllib.env.apis.task_settable_env import TaskSettableEnv, TaskType
from ray.rllib.env.env_context import EnvContext
from ray.rllib.examples.env.curriculum_capable_env import CurriculumCapableEnv
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.test_utils import check_learning_achieved
tf1, tf, tfv = try_import_tf()
torch, nn = try_import_torch()
parser = argparse.ArgumentParser()
parser.add_argument(
"--run",
type=str,
default="PPO",
help="The RLlib-registered algorithm to use.")
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.")
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.")
parser.add_argument(
"--stop-iters",
type=int,
default=50,
help="Number of iterations to train.")
parser.add_argument(
"--stop-timesteps",
type=int,
default=200000,
help="Number of timesteps to train.")
parser.add_argument(
"--stop-reward",
type=float,
default=10000.0,
help="Reward at which we stop training.")
def curriculum_fn(train_results: dict, task_settable_env: TaskSettableEnv,
env_ctx: EnvContext) -> TaskType:
"""Function returning a possibly new task to set `task_settable_env` to.
Args:
train_results (dict): The train results returned by Trainer.train().
task_settable_env (TaskSettableEnv): A single TaskSettableEnv object
used inside any worker and at any vector position. Use `env_ctx`
to get the worker_index, vector_index, and num_workers.
env_ctx (EnvContext): The env context object (i.e. env's config dict
plus properties worker_index, vector_index and num_workers) used
to setup the `task_settable_env`.
Returns:
TaskType: The task to set the env to. This may be the same as the
current one.
"""
# Our env supports tasks 1 (default) to 5.
# With each task, rewards get scaled up by a factor of 10, such that:
# Level 1: Expect rewards between 0.0 and 1.0.
# Level 2: Expect rewards between 1.0 and 10.0, etc..
# We will thus raise the level/task each time we hit a new power of 10.0
new_task = int(np.log10(train_results["episode_reward_mean"]) + 2.1)
# Clamp between valid values, just in case:
new_task = max(min(new_task, 5), 1)
print(f"Worker #{env_ctx.worker_index} vec-idx={env_ctx.vector_index}"
f"\nR={train_results['episode_reward_mean']}"
f"\nSetting env to task={new_task}")
return new_task
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
# Can also register the env creator function explicitly with:
# register_env(
# "curriculum_env", lambda config: CurriculumCapableEnv(config))
config = {
"env": CurriculumCapableEnv, # or "curriculum_env" if registered above
"env_config": {
"start_level": 1,
},
"num_workers": 2, # parallelism
"num_envs_per_worker": 5,
"env_task_fn": curriculum_fn,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"framework": args.framework,
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.run(args.run, config=config, stop=stop, verbose=2)
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()