ray/rllib/examples/mobilenet_v2_with_lstm.py

59 lines
1.8 KiB
Python
Raw Normal View History

# Explains/tests Issues:
# https://github.com/ray-project/ray/issues/6928
# https://github.com/ray-project/ray/issues/6732
import argparse
from gym.spaces import Discrete, Box
import numpy as np
from ray.rllib.agents.ppo import PPOTrainer
from ray.rllib.examples.env.random_env import RandomEnv
from ray.rllib.examples.models.mobilenet_v2_with_lstm_models import \
MobileV2PlusRNNModel, TorchMobileV2PlusRNNModel
from ray.rllib.models import ModelCatalog
from ray.rllib.utils import try_import_tf
tf = try_import_tf()
cnn_shape = (4, 4, 3)
# The torch version of MobileNetV2 does channels first.
cnn_shape_torch = (3, 224, 224)
parser = argparse.ArgumentParser()
parser.add_argument("--torch", action="store_true")
if __name__ == "__main__":
args = parser.parse_args()
# Register our custom model.
ModelCatalog.register_custom_model(
"my_model", TorchMobileV2PlusRNNModel
if args.torch else MobileV2PlusRNNModel)
# Configure our Trainer.
config = {
"framework": "torch" if args.torch else "tf",
"model": {
"custom_model": "my_model",
# Extra config passed to the custom model's c'tor as kwargs.
"custom_model_config": {
"cnn_shape": cnn_shape_torch if args.torch else cnn_shape,
},
"max_seq_len": 20,
},
"vf_share_layers": True,
"num_workers": 0, # no parallelism
"env_config": {
"action_space": Discrete(2),
# Test a simple Image observation space.
"observation_space": Box(
0.0,
1.0,
shape=cnn_shape_torch if args.torch else cnn_shape,
dtype=np.float32)
},
}
trainer = PPOTrainer(config=config, env=RandomEnv)
print(trainer.train())