ray/rllib/contrib/bandits/models/linear_regression.py

250 lines
9 KiB
Python
Raw Normal View History

import gym
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.torch.torch_modelv2 import TorchModelV2
from ray.rllib.utils import try_import_torch
from ray.rllib.utils.annotations import override
torch, nn = try_import_torch()
class OnlineLinearRegression(nn.Module):
def __init__(self, feature_dim, alpha=1, lambda_=1):
super(OnlineLinearRegression, self).__init__()
self.d = feature_dim
self.alpha = alpha
self.precision = nn.Parameter(
data=lambda_ * torch.eye(self.d), requires_grad=False)
self.f = nn.Parameter(data=torch.zeros(self.d, ), requires_grad=False)
self.covariance = nn.Parameter(
data=torch.inverse(self.precision), requires_grad=False)
self.theta = nn.Parameter(
data=self.covariance.matmul(self.f), requires_grad=False)
self._init_params()
def _init_params(self):
self.update_schedule = 1
self.delta_f = 0
self.delta_b = 0
self.time = 0
self.covariance.mul_(self.alpha)
self.dist = torch.distributions.multivariate_normal\
.MultivariateNormal(self.theta, self.covariance)
def partial_fit(self, x, y):
# TODO: Handle batch of data rather than individual points
self._check_inputs(x, y)
x = x.squeeze(0)
y = y.item()
self.time += 1
self.delta_f += y * x
self.delta_b += torch.ger(x, x)
# Can follow an update schedule if not doing sherman morison updates
if self.time % self.update_schedule == 0:
self.precision += self.delta_b
self.f += self.delta_f
self.delta_b = 0
self.delta_f = 0
torch.inverse(self.precision, out=self.covariance)
torch.matmul(self.covariance, self.f, out=self.theta)
self.covariance.mul_(self.alpha)
def sample_theta(self):
theta = self.dist.sample()
return theta
def get_ucbs(self, x):
""" Calculate upper confidence bounds using covariance matrix according
to algorithm 1: LinUCB
(http://proceedings.mlr.press/v15/chu11a/chu11a.pdf).
Args:
x (torch.Tensor): Input feature tensor of shape
(batch_size, feature_dim)
"""
projections = self.covariance @ x.T
batch_dots = (x * projections.T).sum(dim=1)
return batch_dots.sqrt()
def forward(self, x, sample_theta=False):
""" Predict scores on input batch using the underlying linear model.
Args:
x (torch.Tensor): Input feature tensor of shape
(batch_size, feature_dim)
sample_theta (bool): Whether to sample the weights from its
posterior distribution to perform Thompson Sampling as per
http://proceedings.mlr.press/v28/agrawal13.pdf .
"""
self._check_inputs(x)
theta = self.sample_theta() if sample_theta else self.theta
scores = x @ theta
return scores
def _check_inputs(self, x, y=None):
assert x.ndim in [2, 3], \
"Input context tensor must be 2 or 3 dimensional, where the" \
" first dimension is batch size"
assert x.shape[1] == self.d, \
"Feature dimensions of weights ({}) and context ({}) do not " \
"match!".format(self.d, x.shape[1])
if y:
assert torch.is_tensor(y) and y.numel() == 1,\
"Target should be a tensor;" \
"Only online learning with a batch size of 1 is " \
"supported for now!"
class DiscreteLinearModel(TorchModelV2, nn.Module):
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name)
nn.Module.__init__(self)
alpha = model_config.get("alpha", 1)
lambda_ = model_config.get("lambda_", 1)
self.feature_dim = obs_space.sample().size
self.arms = nn.ModuleList([
OnlineLinearRegression(
feature_dim=self.feature_dim, alpha=alpha, lambda_=lambda_)
for i in range(self.num_outputs)
])
self._cur_value = None
self._cur_ctx = None
@override(ModelV2)
def forward(self, input_dict, state, seq_lens):
x = input_dict["obs"]
scores = self.predict(x)
return scores, state
def predict(self, x, sample_theta=False, use_ucb=False):
self._cur_ctx = x
scores = torch.stack(
[self.arms[i](x, sample_theta) for i in range(self.num_outputs)],
dim=-1)
self._cur_value = scores
if use_ucb:
ucbs = torch.stack(
[self.arms[i].get_ucbs(x) for i in range(self.num_outputs)],
dim=-1)
return scores + ucbs
else:
return scores
def partial_fit(self, x, y, arm):
assert 0 <= arm.item() < len(self.arms), \
"Invalid arm: {}. It should be 0 <= arm < {}".format(
arm.item(), len(self.arms))
self.arms[arm].partial_fit(x, y)
@override(ModelV2)
def value_function(self):
assert self._cur_value is not None, "must call forward() first"
return self._cur_value
def current_obs(self):
assert self._cur_ctx is not None, "must call forward() first"
return self._cur_ctx
class DiscreteLinearModelUCB(DiscreteLinearModel):
def forward(self, input_dict, state, seq_lens):
x = input_dict["obs"]
scores = super(DiscreteLinearModelUCB, self).predict(
x, sample_theta=False, use_ucb=True)
return scores, state
class DiscreteLinearModelThompsonSampling(DiscreteLinearModel):
def forward(self, input_dict, state, seq_lens):
x = input_dict["obs"]
scores = super(DiscreteLinearModelThompsonSampling, self).predict(
x, sample_theta=True, use_ucb=False)
return scores, state
class ParametricLinearModel(TorchModelV2, nn.Module):
def __init__(self, obs_space, action_space, num_outputs, model_config,
name):
TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
model_config, name)
nn.Module.__init__(self)
alpha = model_config.get("alpha", 1)
lambda_ = model_config.get("lambda_", 0.1)
# RLlib preprocessors will flatten the observation space and unflatten
# it later. Accessing the original space here.
original_space = obs_space.original_space
assert isinstance(original_space, gym.spaces.Dict) and \
"item" in original_space.spaces, \
"This model only supports gym.spaces.Dict observation spaces."
self.feature_dim = original_space["item"].shape[-1]
self.arm = OnlineLinearRegression(
feature_dim=self.feature_dim, alpha=alpha, lambda_=lambda_)
self._cur_value = None
self._cur_ctx = None
def _check_inputs(self, x):
if x.ndim == 3:
assert x.size()[
0] == 1, "Only batch size of 1 is supported for now."
@override(ModelV2)
def forward(self, input_dict, state, seq_lens):
x = input_dict["obs"]["item"]
self._check_inputs(x)
x.squeeze_(dim=0) # Remove the batch dimension
scores = self.predict(x)
scores.unsqueeze_(dim=0) # Add the batch dimension
return scores, state
def predict(self, x, sample_theta=False, use_ucb=False):
self._cur_ctx = x
scores = self.arm(x, sample_theta)
self._cur_value = scores
if use_ucb:
ucbs = self.arm.get_ucbs(x)
return scores + 0.3 * ucbs
else:
return scores
def partial_fit(self, x, y, arm):
x = x["item"]
action_id = arm.item()
self.arm.partial_fit(x[:, action_id], y)
@override(ModelV2)
def value_function(self):
assert self._cur_value is not None, "must call forward() first"
return self._cur_value
def current_obs(self):
assert self._cur_ctx is not None, "must call forward() first"
return self._cur_ctx
class ParametricLinearModelUCB(ParametricLinearModel):
def forward(self, input_dict, state, seq_lens):
x = input_dict["obs"]["item"]
self._check_inputs(x)
x.squeeze_(dim=0) # Remove the batch dimension
scores = super(ParametricLinearModelUCB, self).predict(
x, sample_theta=False, use_ucb=True)
scores.unsqueeze_(dim=0) # Add the batch dimension
return scores, state
class ParametricLinearModelThompsonSampling(ParametricLinearModel):
def forward(self, input_dict, state, seq_lens):
x = input_dict["obs"]["item"]
self._check_inputs(x)
x.squeeze_(dim=0) # Remove the batch dimension
scores = super(ParametricLinearModelThompsonSampling, self).predict(
x, sample_theta=True, use_ucb=False)
scores.unsqueeze_(dim=0) # Add the batch dimension
return scores, state