ray/rllib/tuned_examples/impala/pong-impala-fast.yaml

20 lines
605 B
YAML
Raw Normal View History

# This can reach 18-19 reward in ~3 minutes on p3.16xl head w/m4.16xl workers
# 128 workers -> 3 minutes (best case)
# 64 workers -> 4 minutes
# 32 workers -> 7 minutes
# See also: pong-impala.yaml, pong-impala-vectorized.yaml
pong-impala-fast:
env: PongNoFrameskip-v4
run: IMPALA
config:
rollout_fragment_length: 50
train_batch_size: 1000
num_workers: 128
num_envs_per_worker: 5
broadcast_interval: 5
max_sample_requests_in_flight_per_worker: 1
num_multi_gpu_tower_stacks: 4
num_gpus: 2
model:
dim: 42