mirror of
https://github.com/vale981/prosem-latex
synced 2025-03-04 09:11:41 -05:00
425 lines
13 KiB
TeX
425 lines
13 KiB
TeX
\documentclass[presentation,t,aspectratio=169]{beamer}
|
||
\usepackage{siunitx}
|
||
\usepackage[utf8]{inputenc}
|
||
\usepackage[font={scriptsize,it}]{caption}
|
||
\usepackage{hyperref}
|
||
\usepackage[T1]{fontenc}
|
||
\sisetup{prespace}
|
||
\usetheme{Antibes}
|
||
\setbeamertemplate{itemize items}[default]
|
||
\setbeamertemplate{enumerate items}[default]
|
||
|
||
\usepackage{stackengine}
|
||
\newcommand{\figcite}[3]{
|
||
\def\stackalignment{c}
|
||
\stackunder{\includegraphics[width=#1]{#2}}{\tiny Source: \url{#3}}
|
||
}
|
||
\newcommand{\btVFill}{\vskip0pt plus 1filll}
|
||
|
||
|
||
% \logo{\includegraphics[height=0.5cm]{logo.png}}
|
||
\newcommand{\inlineMovie}[5][autostart&loop]
|
||
{
|
||
\href{run:#2?#1}{\figcite{#4}{#3}{#5}}
|
||
}
|
||
|
||
\setbeamertemplate{footline}[frame number]
|
||
|
||
|
||
\AtBeginSection[]
|
||
{
|
||
\begin{frame}
|
||
\tableofcontents[currentsection]
|
||
\end{frame}
|
||
}
|
||
|
||
|
||
\title{Detection of Exoplanets}
|
||
\subtitle{Part 1 - Exoplanet Overview}
|
||
\author{Valentin Boettcher}
|
||
\beamertemplatenavigationsymbolsempty
|
||
|
||
\begin{document}
|
||
\begin{frame}
|
||
\titlepage
|
||
\end{frame}
|
||
|
||
{
|
||
\usebackgroundtemplate{
|
||
\includegraphics[width=\paperwidth]{material/peg_b.jpg}}
|
||
\begin{frame}[plain]
|
||
\end{frame}
|
||
}
|
||
|
||
\begin{frame}
|
||
\frametitle{Outline}
|
||
\tableofcontents[pausesections]
|
||
\end{frame}
|
||
|
||
\section{The definition of an Exoplanet}
|
||
\begin{frame}
|
||
\frametitle{What is an Exoplanet?}
|
||
\begin{block}{Origins of the Term}
|
||
Exoplanet / Extrasolar planet from Greek 'Exo' (Latinized)
|
||
- ``Outside''.
|
||
\end{block}
|
||
\pause
|
||
\begin{definition}
|
||
There is none!
|
||
\end{definition}
|
||
\begin{block}{Some distinction from Stars}
|
||
\begin{itemize}
|
||
\item Fusion: does not fuse hydrogen (or any other element)
|
||
\\ $\implies$ Mass: moderately massive
|
||
\item Position: in orbit around a star
|
||
\item Formation: formed from accretion disk around a star
|
||
\end{itemize}
|
||
\end{block}
|
||
\end{frame}
|
||
\begin{frame}
|
||
\frametitle{A Working-Defintion}
|
||
\begin{block}{IAU 2003 Recommendation}
|
||
Planets $=$ Objects below 13 Jupiter masses.
|
||
\end{block}
|
||
\pause
|
||
Another Proposal based on the solar system definition by Jean-Luc Margot:
|
||
\begin{itemize}
|
||
\item based on metric for the clearing of the orbit
|
||
\begin{itemize}
|
||
\item based on mass of start and planet, orbital period
|
||
\end{itemize}
|
||
\item classifies 99\% of the known planets
|
||
\end{itemize}
|
||
\end{frame}
|
||
|
||
\section{Nomenclature and Units}
|
||
\begin{frame}
|
||
\begin{block}{Nomenclature}
|
||
Name/Designation of Star + a Letter ('b', 'c', ...)
|
||
\end{block}
|
||
\pause
|
||
\begin{example}
|
||
51 Pegasi b - first confirmed exoplanet around a normal star
|
||
\end{example}
|
||
\pause
|
||
\begin{block}{Units}
|
||
\begin{itemize}
|
||
\item Degrees ($1\degree$), Arcminutes ($1\arcmin$), Arcsecond ($1\arcsec$) - Measure for seperation on an imaginary sphere
|
||
\begin{itemize}
|
||
\item $\SI{1}{\arcmin}= \frac{1}{60} \degree$, $\SI{1}{\arcsec}= \frac{1}{60} \arcmin$
|
||
\end{itemize}
|
||
\item $\mathrm{AU}$ Astronomical Unit - mean distance Earth-Sun $= \SI{149597870700}{\km}$
|
||
\item $\lightyear$ Lightyear - distance light travels in a year $= \SI{9.4607e15}{\meter}$
|
||
\end{itemize}
|
||
\end{block}
|
||
\end{frame}
|
||
|
||
% \subsection{Some Orbital Parameters}
|
||
% \begin{frame}
|
||
% \frametitle{Some Orbital Parameters}
|
||
% \begin{columns}[t]
|
||
% \column{.7\textwidth}
|
||
% \begin{itemize}
|
||
% \item<1-> Period $P\;[\mathrm{days}]$
|
||
% \item<2-> Semi Major Axis $a\;[\mathrm{au}]$
|
||
% \item<3-> Eccentricity $\epsilon$
|
||
% % \item<4->inclination $i\;[\degree]$ in respect to the reference plane
|
||
% \end{itemize}
|
||
% \column{.3\textwidth}
|
||
% \begin{block}{}<2->
|
||
% \includegraphics[width=\textwidth]{material/el.png}
|
||
% \end{block}
|
||
% % \begin{block}{}<4->
|
||
% % \includegraphics[width=\textwidth]{material/inc.png}
|
||
% % \end{block}
|
||
% \end{columns}
|
||
% \end{frame}
|
||
|
||
\section{Challenges in Exoplanet Detection}
|
||
\begin{frame}
|
||
The problem with planets:
|
||
\begin{itemize}
|
||
\item usually small compared to star
|
||
\pause
|
||
\item close to the star
|
||
\end{itemize}
|
||
\pause
|
||
\begin{example}
|
||
Looking at the Solar System and 51 Pegasi ($d=\SI{50.9}{\lightyear}$):
|
||
\begin{itemize}
|
||
% \item Angular Separation of Eath: $\SI{0.06}{\arcsec}$
|
||
\item Angular Separation of 51 Pegasi b as seen from Earth: $\SI{0.003}{\arcsec}$
|
||
\end{itemize}
|
||
\pause
|
||
Out of league for most Telescopes.
|
||
\end{example}
|
||
\pause
|
||
\begin{itemize}
|
||
\item not lumnius themselves (in the visible band) \\
|
||
$\implies$ \alert{very (very!) faint}
|
||
\end{itemize}
|
||
\pause
|
||
$\longrightarrow$ only about 20 directly imaged planets
|
||
\end{frame}
|
||
|
||
\subsection{Direct Imaging}
|
||
\begin{frame}
|
||
\frametitle{Direct Imaging}
|
||
\pause
|
||
\begin{enumerate}
|
||
\item masking the star \pause
|
||
\item taking a lot of images (in infrared) \pause
|
||
\item stacking, interferometry and clever computer processing \pause
|
||
\end{enumerate}
|
||
|
||
\end{frame}
|
||
% \begin{frame}
|
||
% \frametitle{Least Massive: Formalhaut b (2 Jup. Masses)}
|
||
% \begin{figure}
|
||
% \centering
|
||
% \includegraphics[width=0.8\textwidth]{material/formb.jpg}
|
||
% \caption{http://spacetelescope.org/images/html/heic0821a.html}
|
||
% \end{figure}
|
||
% \end{frame}
|
||
\begin{frame}
|
||
\frametitle{Coldest: Gliese 504 b ($\SI{240}{\celsius}$)}
|
||
\begin{figure}
|
||
\centering
|
||
\figcite{0.45\textwidth}{material/glies.jpg}{http://www.nasa.gov/content/goddard/astronomers-image-lowest-mass-exoplanet-around-a-sun-like-star/index.html}
|
||
\end{figure}
|
||
\end{frame}
|
||
\begin{frame}
|
||
\frametitle{HR 8799 has 4 Planets}
|
||
\begin{figure}
|
||
\centering
|
||
\inlineMovie{material/keck_exo.avi}{material/keck_ex_p.png}{.75\textheight}{https://www.manyworlds.space/index.php/tag/hr-8799/}
|
||
\end{figure}
|
||
\end{frame}
|
||
|
||
\section{Historic Overview}
|
||
% \subsection{Antique}
|
||
% \begin{frame}
|
||
% \frametitle{Antique}
|
||
% \begin{itemize}
|
||
% \item universe as a nebula \pause $\implies$ matter cant stay evenly
|
||
% distributed forever
|
||
% \end{itemize}
|
||
|
||
% \pause
|
||
% \begin{quote}
|
||
% ``Many bodies of all sorts and shapes move from the infinite into a
|
||
% great void; they come together there and produce a single whirl,
|
||
% in which, colliding with one another and revolving in all manner
|
||
% of ways, they begin to separate like to like.'' \hfill - \tiny{\textit{LEUCIPPUS, 480-420 B.C.}}
|
||
% \end{quote}
|
||
% \pause
|
||
% \begin{quote}
|
||
% ``There \alert{cannot be more worlds} than one world.'' \\ \hfill - \tiny{\textit{ARSITOTLE, 384–322 B.C.}}
|
||
% \end{quote}
|
||
% \end{frame}
|
||
|
||
\begin{frame}
|
||
\begin{columns}[t]
|
||
\column{0.7\textwidth}
|
||
\begin{itemize}
|
||
\item<1-> \small{\textit{KOPERNIKUS}} (1543) of course supported plurality
|
||
\item<2-> \small{\textit{GIORDANO BRUNO}} (1548-1600) postulates spacial infinity
|
||
\item<3-> \small{\textit{NEWTON}} (1548-1600) speculates about other solar systems
|
||
\item<4-> \small{\textit{OTTO STRUVE}} (1952) proposes methods of exoplanet detection
|
||
\end{itemize}
|
||
\only<5>{$\longrightarrow$ In the following years: A lot of false-positives.}
|
||
\column{0.3\textwidth}
|
||
\only<1>{\figcite{\textwidth}{material/kop.jpg}{Icones, p. 36}}
|
||
\only<2>{\figcite{\textwidth}{material/brun.jpg}{Neue Bibliothec}}
|
||
\only<3>{\figcite{\textwidth}{material/newt.jpg}{National Portrait Gallery: NPG 2881}}
|
||
\only<4->{\figcite{\textwidth}{material/struve.jpg}{US Post}}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\subsection{First Planets}
|
||
\begin{frame}
|
||
\frametitle{First Planets}
|
||
\begin{columns}
|
||
\column{0.5\textwidth}
|
||
\begin{itemize}
|
||
\item<1-> 1992 - first radio pulsar timing planet
|
||
\end{itemize}
|
||
\action<2->{
|
||
\begin{block}{1995 - First planet around 'real' star}
|
||
\begin{itemize}
|
||
\item discovered by Mayor, Queloz of University Geneva
|
||
\item 4 day orbit, much closer than Mercury (Hot Jupiter), 1.9 Jupiter radii
|
||
\end{itemize}
|
||
\end{block}}
|
||
\only<1>{\column{0.5\textwidth}\figcite{\textwidth}{material/puls.jpg}{https://photojournal.jpl.nasa.gov/catalog/PIA08042}}
|
||
\only<2>{\column{0.5\textwidth}\figcite{\textwidth}{material/peg_b.jpg}{https://www.eso.org/public/russia/images/eso1517a/}}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\subsection{State-of-the-Art}
|
||
\begin{frame}
|
||
\frametitle{Today's State-of-the-Art}
|
||
\only<1>{
|
||
\begin{center}
|
||
\figcite{.9\textwidth}{material/exoplanets_1.png}{http://exoplanets.org/}
|
||
\end{center}
|
||
}
|
||
\only<2>{
|
||
\begin{center}
|
||
\figcite{.9\textwidth}{material/exoplanets.png}{http://exoplanets.org/}
|
||
\end{center}
|
||
}
|
||
\end{frame}
|
||
|
||
\begin{frame}
|
||
\frametitle{KEPLER Space Telescope}
|
||
\begin{columns}[T]
|
||
\column{0.5\textwidth}
|
||
\begin{itemize}
|
||
\item space observatory by \textit{NASA} to find planets
|
||
\item 2344 confirmed, over 2000 unconfirmed candidates
|
||
\end{itemize}
|
||
\column{0.5\textwidth}
|
||
\figcite{\textwidth}{material/kepler.jpg}{https://www.nasa.gov/mission_pages/kepler/}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\subsection{Future}
|
||
\begin{frame}
|
||
\frametitle{GAIA Space Telescope}
|
||
\begin{columns}[T]
|
||
\column{0.5\textwidth}
|
||
\begin{itemize}
|
||
\item creates 3D Star Map since 2013
|
||
\item goal: find 10.000 - 50.000 Exoplanets (0 found yet)
|
||
\end{itemize}
|
||
\column{0.5\textwidth}
|
||
% \includegraphics[witdh=0.2\textwidth]{material/kepler.jpg}
|
||
\figcite{\textwidth}{material/gaia.jpg}{http://www.jwst.nasa.gov/images_artist13532.html}
|
||
\end{columns}
|
||
\end{frame}
|
||
\begin{frame}
|
||
\frametitle{JWST James Web Space Telescope}
|
||
\begin{columns}[T]
|
||
\column{0.5\textwidth}
|
||
\begin{itemize}
|
||
\item to-be successor of Hubble for infrared spectrum
|
||
\item delayed to 2021 (originally launch 2013)
|
||
\end{itemize}
|
||
\column{0.5\textwidth}
|
||
\figcite{\textwidth}{material/jwst.jpg}{http://www.jwst.nasa.gov/images_artist13532.html}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
|
||
{
|
||
\begin{frame}[plain]
|
||
\begin{center}
|
||
\includegraphics[height=0.9\paperheight]{material/progress.jpg}
|
||
\end{center}
|
||
\end{frame}
|
||
}
|
||
|
||
\section{The Diversity of Exoplanets}
|
||
\begin{frame}
|
||
\frametitle{Some Facts}
|
||
\begin{columns}
|
||
\column{.5\textwidth}
|
||
\begin{itemize}
|
||
\item exoplanets orbit all kinds of stars
|
||
\item mass range: 0.02 to 5780 Earth Masses
|
||
\item orbital period range: \SIrange{0.4}{3.2e5}{\day}
|
||
\item semi major axis: \SIrange{0.00585}{113}{AU}
|
||
\item furthest away: \SI{21190}{\lightyear}
|
||
\end{itemize}
|
||
\column{.5\textwidth}
|
||
\figcite{\textwidth}{material/mass_sep.png}{http://exoplanets.org/plots}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\subsection{Exoplanet Extremes}
|
||
\begin{frame}
|
||
\frametitle{Hot Jupiters}
|
||
\begin{columns}
|
||
\column{0.5\textwidth}
|
||
\begin{itemize}
|
||
\item within a few Jupiter masses
|
||
\item close to star (\SIrange{0.015}{0.05}{AU}) $\implies$ hot
|
||
\item easy to detect by radial velocity method, astrometry
|
||
\end{itemize}
|
||
\column{0.5\textwidth}
|
||
\figcite{\textwidth}{material/hj.jpg}{http://hubblesite.org/newscenter/archive/releases/2008}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
\begin{frame}
|
||
\begin{columns}
|
||
\frametitle{Planets in Habitable Zone}
|
||
\column{0.5\textwidth}
|
||
\begin{itemize}
|
||
\item<1-> habitable zone: allows liquid water, tollerable radiation levels
|
||
\item<2-> nearest: Proxima Centauri b $\SI{4.2}{\lightyear}$
|
||
\item<3-> extrapolations of KEPLER $\rightarrow$ more than 40 billion
|
||
in milkyway
|
||
\end{itemize}
|
||
\column{0.5\textwidth}
|
||
% \includegraphics[witdh=0.2\textwidth]{material/kepler.jpg}
|
||
\action<2->{\figcite{\textwidth}{material/prox_b.jpg}{https://www.eso.org/public/images/eso1629a/}}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
{
|
||
\begin{frame}[plain]
|
||
\begin{center}
|
||
\includegraphics[height=0.9\paperheight]{material/habit.jpg}
|
||
\end{center}
|
||
\end{frame}
|
||
}
|
||
|
||
\begin{frame}
|
||
\frametitle{Systems with many Planets}
|
||
\begin{columns}
|
||
\column{0.5\textwidth}
|
||
\begin{itemize}
|
||
\item<1-> Trappist-1 has 7 planets, some in habtialble zone
|
||
\item<2-> hard to detect, but supposed to be prevalent
|
||
\item<3-> exoplanet.eu lists 637 multiple planet systems
|
||
\end{itemize}
|
||
\column{0.5\textwidth}
|
||
\figcite{\textwidth}{material/trap.jpg}{http://photojournal.jpl.nasa.gov/figures/PIA22093_fig1.jpg}
|
||
\end{columns}
|
||
\end{frame}
|
||
|
||
{
|
||
\usebackgroundtemplate{
|
||
\includegraphics[width=\paperwidth]{material/trapbig.jpg}}
|
||
\begin{frame}[plain]
|
||
\bigskip
|
||
\hfill \color{white} Thanks for your attention!
|
||
|
||
\btVFill
|
||
|
||
\hfill\tiny\color{white}\url{https://www.spacetelescope.org/images/heic1713a/}\bigskip
|
||
\end{frame}
|
||
}
|
||
|
||
\section*{Resources}
|
||
\begin{frame}
|
||
\frametitle{(Re)Sources}
|
||
\begin{itemize}
|
||
\item \scriptsize \url{http://exoplanets.org/} big, accurate database \normalsize
|
||
\item \scriptsize \url{http://exoplanet.eu/} another database \normalsize
|
||
\item \scriptsize \url{https://exoplanets.nasa.gov/} 3D visualizations! \normalsize
|
||
\item \tiny{``PROPOSAL FOR A PROJECT OF HIGH-PRECISION STELLAR RADIAL VELOCITY WORK''} by Otto Struve \normalsize
|
||
\item \tiny{``A QUANTITATIVE CRITERION FOR DEFINING PLANETS''} by Jean-Luc Margot \normalsize
|
||
\item \tiny{``A COMBINED VERY LARGE TELESCOPE AND GEMINI STUDY OF THE ATMOSPHERE
|
||
OF THE DIRECTLY IMAGED PLANET, BETA PICTORIS b''} by Thayne Currie et al. \normalsize
|
||
\item \tiny{``TEMPERATE EARTH-SIZED PLANETS TRANSITING A NEARBY
|
||
ULTRACOOL DWARF STAR''} by
|
||
Michaël Gillon et al. \normalsize
|
||
\item \tiny{``NO LARGE POPULATION OF UNBOUND OR WIDE-ORBIT
|
||
JUPITER-MASS PLANETS''} by Przemek Mróz et al. (Rogue Planets, not included in the talk) \normalsize
|
||
|
||
\end{itemize}
|
||
\end{frame}
|
||
\end{document}
|