\documentclass[fontsize=11pt,paper=a4,open=any, twoside=no,toc=listof,toc=bibliography,headings=optiontohead, captions=nooneline,captions=tableabove,english,DIV=12,numbers=noenddot,final,parskip=false, headinclude=true,footinclude=false,BCOR=0mm]{scrartcl} \pdfvariable suppressoptionalinfo 512\relax \synctex=1 \author{Valentin Boettcher} \usepackage{hirostyle} \usepackage{hiromacros} \addbibresource{references.bib} \title{Input-Output Theory for Modulated Optical Fibre Resonators} \date{2023} \graphicspath{{graphics}} \newcommand{\inputf}[0]{\ensuremath{\mathrm{in}}} \newcommand{\outputf}[0]{\ensuremath{\mathrm{out}}} \usetikzlibrary{math} % \usetikzlibrary{external} % \tikzexternalize[prefix=tikz/] \usepackage{pgfplots} \begin{document} \maketitle \tableofcontents \section{Microscopic Derivation} \label{sec:micr-deriv} The setup we are describing consists of a general driven photonic system \(A\) and a transmission line \(B\). The \(A\) system is considered to have the Hamiltonian \begin{equation} \label{eq:1} H_{A}=H_{0}+V(t) = ∑_{j,β;i,α} \pqty{H_{0}}_{i,α;j,β}a_{j,β}^†a_{i,α}= ∑_{m} ω^{0}_{m} c_{m}^†c_{m} + V(t), \end{equation} where \(\comm{a_{i,α}}{a^†_{j,β}}=δ_{ij}δ_{αβ}\). We assume that the system \(A\) consists of several distinct resonators/cavities indexed by the first index on the \(a^†\), who each have their own lengths \(L_{A,i}\) and eigen-momenta \(k_{i,α} = 2πα/L_{A,i}\) with \(α\in\ZZ\). The eigenmodes of the system \(c_{m}\) are linear combinations of the bare modes in the photonic system where we have \begin{equation} \label{eq:43} c_{m} = ∑_{i,α} T^\ast_{i,α;m}a_{i,α}, \end{equation} where \(T_{i,α;m}\) is the matrix whose rows are the normalized eigenvectors of the matrix \(\pqty{H_{0}}_{i,α;j,β}\). We designate the bare modes of the EM field that are actually in contact with the transmission line as the modes with subsystem index \(i=i_{0}\) which is suppressed for clarity in all expressions concerning that subsystem. We find modes \(a_{β}\) for the electric field in the subsystem in contact with the transmission line \begin{equation} \label{eq:4} E_{A}(x,t)= \iu \sqrt{\frac{\hbar}{2ε_{0}n_{A}^{2} L_{A,\perp}^{2} L_{A}}} ∑_{β} \sqrt{ω_{k_β}} \pqty{a_{β}(t) \eu^{\iu k_{β} x } - a_{β}^†(t) \eu^{-\iu k_{β} x}}, \end{equation} where \(L_{A,\perp}\) is a length scale that can be interpreted as the diameter of the transmission line~\cite{Jacobs} and \(L_{A}\) is the length of the cavity/resonator that hosts the electric field. The modes have wave numbers \(k_{β} = 2πβ/L_{A}\) for \(β \in \ZZ\) and frequencies \(ω_{k_β} = c \abs{k_{β}}/n_{A}\), where \(n_{A}\) is the refractive index inside the cavity. For simplicity we set \(\hbar = 1\) such that energy is measured in units of frequency. \subsection{Transformations and Rotating Frames} \label{sec:rotating-frames} The bare \(a_{β}\) modes are linear combinations of the \(c_{m}\) and can be related through \begin{equation} \label{eq:5} a_{β} = ∑_{m} U_{βm} c_{m}, \end{equation} where \(U_{βm} = T_{i_{0},β;m}\) is a not necessarily square matrix that obeys the unitarity relation \(U U^† = \id\). Transitioning into a rotating frame with respect to \(H_{0}\) and employing the rotating wave approximation removes all but the slowest-oscillating rotating terms from the interaction \begin{multline} \label{eq:12} h_{m}(t) = c_{m}(t)\eu^{\iu \pqty{ω^{0}_{m}-ε_{m}}t} \equiv c_{m}(t)\eu^{\iu \tilde{ω}^{0}_{m}t} \\\implies H_{A} \to \tilde{H}_{A}= ∑_{mn}\pqty{V_{mn}(t) + ε_{m}δ_{mn}} \eu^{\iu t (ω^{0}_{n}-ω^{0}_{m})}\eu^{-\iu (ε_{n}-ε_{m})t} {c}_{m}^†{c}_{n} \approx ∑_{mn}\pqty{V^{0}_{mn}+ ε_{m}δ_{mn}} {h}_{m}^†{h}_{n}, \end{multline} where \(\abs{ε_{m}}\ll\abs{ω^{0}_{m}}\)\(\abs{ε_{m}-ε_{n}}\ll\abs{ω^{0}_{m} - ω^{0}_{n}}\) are the detunings of the drive with respect to the energy levels of \(H_{0}\). \emph{This constitutes our target Hamiltonian which we can control through the modulation of \(V(t)\)} \begin{equation} \label{eq:109} H^{T}_{mn}= {V^{0}_{mn} + δ_{mn}{ε_{m}-\iu η_{m}}}. \end{equation} Due to the coupling to the transmission line we will find that the equation of motion for the \(h_{m}\) becomes non-unitary with a damping term \begin{equation} \label{eq:33} \iu \dot{h}_{m} = ∑_{n}\bqty{V^{0}_{mn} + δ_{mn}{ε_{m}-\iu η_{m}}}h_{n}. \end{equation} We can subsequently find a (non-unitary) transformation that diagonalizes the RWA interaction \begin{equation} \label{eq:30} ∑_{mn}\pqty{O^{-1}}_{γm}\bqty{V^{0}_{mn} + δ_{mn}\pqty{ε_{m}-\iu η_{m}}}O_{nγ'} = \pqty{ω_{γ}-\iu λ_{γ}} δ_{γ,γ'}. \end{equation} For \(η_{m}=0\) the columns of \(O\) are the normalized eigenvectors of \(V_{mn}^{0}=\mel{m}{V^{0}}{n}\). So if \(\ket{ψ_{j}}\) is an eigenvector of \(V\), then \(\braket{i}{ψ_{j}} = O_{ij}\) \footnote{This is just a reminder for Valentin who can't seem to keep this in his head.}. For finite \(η_{m}\) we will find that the eigenvalues will feature an imaginary part and \(O_{mγ}\) is no longer unitary, except for the case where all \(η_{m}\) are the same. This situation occurs if there are other dominating sources of loss such that the coupling to the transmission line is not a factor or if we couple to a sufficiently narrow range of modes so that the variation of damping rates becomes negligible. Transforming the \(h_{m}\) according to \begin{equation} \label{eq:13} d_{γ} = ∑_{n}O^{-1}_{γn} h_{n} = ∑_{n}O^{-1}_{γn} \eu^{\iu \tilde{ω}^{0}_{n} t}{c}_{n} \implies \iu \dot{d}_{γ} = ω_{γ}d_{γ} \end{equation} leaves us with a very simple equation of motion. In summary, the bare modes of the resonators are denoted by \(a_{j,α}\) where \(j\) refers to the resonator and \(α\) labels the mode within that resonator. The eigenmodes \(c_{m}\) of the coupled oscillators obeying \(H_{0}\) are related to the bare modes \(α_{j,α}\) by \cref{eq:43}. The frame in which the equations of motion for the modes reflects the target Hamiltonian \(H^{T}\) are reached through a transformation into a rotating frame in \cref{eq:12} leading to the \(h_{n}\) modes. The resulting equations of motion for the \(h_{n}\) can be decoupled by the transformation \(O_{mγ}\) giving the eigenmodes of the target Hamiltonian \(d_{γ}\) including damping. It is important to keep in mind that the actual observables are the \(α_{β} = α_{i_{0},β}\) which couple to the transmission line, wheras the modes in the rotating frame \(h_{n}\) correspond to the amplitudes that evolve according to the target Hamiltonian. Let us list the relation between the \(a\), \(c\), \(h\) and \(d\) operators for later reference \begin{equation} \label{eq:67} \begin{array}{@{}l| c c c c@{}} & α_{β} & c_{m} & h_{n} & d_{γ}\\ \midrule a_{β} & 1 & U_{βm}\equiv T_{i_{0},β;m} & U_{βm}\eu^{-\iu \tilde{ω}^0_mt} & ∑_{m}U_{βm}O_{mγ}\eu^{-\iu \tilde{ω}^0_mt} \\ c_{m} & U^{-1}_{mβ} = U^\ast_{βm} & 1 & δ_{mn}\eu^{-\iu \tilde{ω}^0_mt} & O_{mγ}\eu^{-\iu \tilde{ω}^0_nt} \\ h_{n} & U^\ast_{βn}\eu^{\iu \tilde{ω}^0_nt} & δ_{nm}\eu^{\iu \tilde{ω}^0_mt} & 1 & O_{nγ} \\ d_{γ} & ∑_{m} U^\ast_{βm} O^{-1}_{γm} \eu^{\iu \tilde{ω}^0_mt} & O^{-1}_{γn} \eu^{\iu \tilde{ω}^0_mt} & O^{-1}_{γm} & 1. \\ \end{array} \end{equation} The quantity \(x_{i}\) in each row is obtained from the quantity \(y_{j}\) heading each row through the transformation \(A_{ij}(t)\) in each cell by \(x_{i} = ∑_{j}A_{ij}(t)y_{j}\). \subsection{Coupling to the Transmission Line} \label{sec:coupl-transm-line} The transmission line is considered to only have one polarization direction and one dimension of propagation, so that the vector potential is effectively scalar and we have \begin{equation} \label{eq:2} E_{B}(x, t) = \iu\sqrt{\frac{\hbar}{2ε_{0}n_{B}^{2} (2π)^{3}L_{B,\perp}^{2}}} ∫{\sqrt{ω^{B}_{k}}} \pqty{b_{k}(t) \eu^{\iu k x } - b_{k}^†(t) \eu^{-\iu k x}}\dd{k}, \end{equation} with \(\comm{b_{k}}{b_{q}^†}=δ(k-q)\), \(ω^{B}_{k} = c \abs{k}/n_{B}\) with \(n_{B}\) being the refractive index of the fibre and \(L_{B,\perp}\) being the perpendicular length scale as discussed above. Note that the \(b_{k}\) here have dimensions of \(\sqrt{[L]}\) as opposed to \(\sqrt{[t]}\), as is the usual convention in input-output theory. If a stochastic theory is desired, the latter convention is preferrable and can be obtained through substituting \(k\to \pm ω/c n_{B}\) and rescaling \(b_{k}\to b_{k}/ \sqrt{c n_{B}^{-1}}\). An interaction between the transmission line and the system \(A\) roughly inspired by coupled mode theory is \begin{equation} \label{eq:3} H_{I} = g_{0} ∫ E_{A,+}(x,t)E_{B,-}(x,t) f(x) \dd{x} + \hc, \end{equation} where the subscripts \(\pm\) denote positive or negative frequency portions of the fields and \(f(x)\) is a dimensionless weighting function with compact support \([-Δx/2, Δx/2]\) whose maximum is unity. Coupling only the positive/negative parts simplifies the calculations and is consistent with the later application of the rotating wave approximation. A possible phase shift between the fields has been absorbed into the definition of the creation and annihilation operators. Expanding the fields in \cref{eq:3} we obtain \begin{equation} \label{eq:6} H_{I} = {g_{0}} \frac{\hbar Δx}{2 ε_{0}n_{A}n_{B} (2π)^{3} L_{A,\perp}L_{B,\perp}\sqrt{L_{A}}} ∑_{β}∫ \sqrt{ω^{B}_{k}ω_{k_{β}}}\,\tilde{f}(k-k_{β})\, b^†_{k} a_{β} \dd{k} + \hc \end{equation} The Fourier transform of the weighting function \begin{equation} \label{eq:7} \tilde{f}(k) = \frac{1}{Δx} ∫f(x)\eu^{-\iu k x} \dd{x} \end{equation} controls how ``far'' the interaction reaches in \(k\)-space. In the extreme case \(Δx\to 0\) every \(b_{k}\) couples to every \(a_{β}\), whereas for \(Δx\to ∞\) only modes with matching wave-numbers couple. As the \(b_{k}\) will contain both the coherent drive with a laser and the output field amplitudes it is desirable to have this coupling to be as local in \(k\)-space as possible for targeted control and precise readout. In the limit of weak coupling between transmission line and system, which we will assume in a short while, the rotating wave approximation will ensure that our result won't depend significantly on the choice of \(f\). The coupling constant \(g_{0}\) in \cref{eq:6} has the dimensions of \([L]^{2}\times [ε_{0}]\). We define a new coupling constant that has units of energy as \begin{equation} \label{eq:8} g_{0} = g\frac{n_{A}n_{B}ε_{0} L_{A,\perp}L_{B,\perp} 2(2π)^{3}}{\hbar ω_{0}}, \end{equation} where \(ω_{0}\) is a typical frequency\footnote{For example, the frequency of the drive laser.}. Using this, \cref{eq:6} becomes \begin{equation} \label{eq:9} \begin{aligned} H_{I} &= \frac{gΔx}{ \sqrt{L_{A}}} ∑_{β}∫ G_{β}(k) b^†_{k} a_{β} \dd{k} + \hc &G_{β}(k) &= \frac{\sqrt{ω^{B}_{k}ω_{k_β}}}{ω_{0}} \tilde{f}(k-k_{β}). \end{aligned} \end{equation} We note that for a \(ω_{k_{β}}= ω_{0} + δω\) with \(δω \ll ω_{0}\) the coupling factor \(G_{β}(k)\) only depends on the difference \(k-k_{β}\). By defining \begin{equation} \label{eq:11} \mathcal{O(k)} = \frac{Δx}{\sqrt{L_{A}}} ∑_{β} G_β(k)a_{β} = \frac{Δx}{\sqrt{L_{A}}} ∑_{β,m} G_β(k)U_{β,m}c_{m} \end{equation} the interaction takes on the more familiar form \begin{equation} \label{eq:14} H_{I} = {g} ∫ b^†_{k} \mathcal{O}(k) \dd{k} + \hc \end{equation} Changing variables from \(k\) to\footnote{This is a bit unconventional.} \(ω^{B}_{k}=k c / n_{B}\) in \cref{eq:9} we obtain \begin{equation} \label{eq:17} H_{I} = \frac{gΔx}{\sqrt{L_{A}}} ∑_{β}∫_{-∞}^{∞} G'_{β}(ω)f^†_{ω} {a_{β}} \dd{ω} + \hc, \end{equation} where \(f_{ω}=\sqrt{\frac{n_{B}}{c}}b_{\frac{ω n_{B}}{c}}\) with \(\comm{f_{ω}}{f_{ω'}^†}=δ(ω-ω')\) and \(G'_{β}(ω)=G_{β}\pqty{\frac{ω n_{B}}{c}}\). \subsection{Rotating Wave and First Markov Approximation} \label{sec:rotating-wave-first} Following the route taken in \cite{Jacobs}, the next step would be to transition into a rotating frame so that \(\tilde{H}_{A}=\tilde{H}_{B}=0\) and apply the rotating wave approximation. Here, the rotating terms that would occur have the frequencies of the form \(ω^{0}_m + ω_{γ}\) which are not guaranteed to be spaced sufficiently far apart for the RWA to apply\footnote{Consider, for example the SSH model where the \(k\)-space density can be arbitrarily high depending on the length of the chain.}. We therefore work in the frame of the \(h_{m}\) and \(\tilde{f}_{ω} = f_{ω}\eu^{\iu \abs{ω}t}\) to obtain \begin{equation} \label{eq:10} \tilde{H}_{I}= \frac{gΔx}{ \sqrt{L_{A}}} ∑_{β,m}∫ G'_{β}(ω) \eu^{-\iu (\tilde{ω}^{0}_{m}-\abs{ω}) t} U_{β,m} \tilde{f}_k^†h_{m} \dd{ω} + \hc. \end{equation} \begin{figure}[H] \centering {\fontsize{8pt}{1em} \input{graphics/rwa_illustr.pdf_tex}} \caption{\label{fig:rwa_illustr} In the rotating wave approximation the bare frequencies of the resonator only couple to the transmission line in frequency sub-intervals \([ω_{m}-λ_{m}, ω_{m}+λ_{m}]\). A second effect that comes into play is the geometrically induced coupling amplitude \(\tilde{G'}_{m}(ω)\), which is visualized around \(ω_{m}\) under the assumption that all \(G'_{β}\) that enter into \(∑_{β}U_{βm}G'_{β}\) share a similar profile which is a valid assumption in the applications considered \cref{sec:appl-non-mark}.} \end{figure} For \(g \ll \tilde{ω}_{m}^{0}\) each \(h_{m}\) in \cref{eq:10} only interacts with non-overlapping sub-intervals \([\tilde{ω}^{0}_{m}-λ_{m}, \tilde{ω}^{0}_{m}+λ_{m}]\) of the transmission frequency axis (rotating wave approximation) with \(g\ll λ_{m} \ll \tilde{ω}_{m}^{0}\). This situation is illustrated in \cref{fig:rwa_illustr}. Also, the coupling amplitude \(G_{β}(ω)\) is local in frequency space and can assist the RWA depending on the choice of parameters and how close the \(\tilde{ω}^{0}_{m}\) are to the \(ω_{k_{β}}\), i.e. how local in frequency space \(U_{βm}\) is. We obtain \begin{equation} \label{eq:16} \tilde{H}_{I}\approx \frac{gΔx}{ \sqrt{L_{A}}} ∑_{β,m}∫_{\tilde{ω}^{0}_{m}-λ_{m}}^{\tilde{ω}^{0}_{m}+λ_{m}} \eu^{-\iu (\tilde{ω}^{0}_{m}-\abs{ω}) t} U_{β,m} \pqty{G'_{β}(ω) \tilde{f}_{ω}^† + G'_{β}(-ω) \tilde{f}_{-ω}^†}h_{m} \dd{ω} + \hc \end{equation} For any finite \(Δx\) and \(\tilde{ω}_{0}^{m},ω_{k_{β}}\gg \frac{2πc}{Δx n_{A}}\) we can assume \begin{equation} \label{eq:44} G'_{β}\pqty{-\sgn(β) ω}\approx 0 \end{equation} in \cref{eq:16}. As each \({h}_{m}\) is now interacting with non-overlapping transmission-line field modes, we can introduce a separate field for each \({h}_{m}\) that commutes with all other fields and extend the integration bounds to infinity again\footnote{This is called the ``First Markov Approximation'' in \refcite{Gardiner1985}.}. Care has to be taken to maintain consistency with \cref{eq:44}, \begin{equation} \label{eq:16} \tilde{H}_{I}= \frac{gΔx}{ \sqrt{L_{A}}} ∑_{β,m}∫_{0}^{∞} \eu^{-\iu (\tilde{ω}^{0}_{m}-\abs{ω}) t} U_{β,m} G'_{β}(\sgn({β})ω) \tilde{f}^{m,†}_{\sgn({β})ω}{h}_{m} \dd{ω} + \hc \end{equation} which becomes\footnote{A lot of discussion for a simple result :).} \begin{equation} \label{eq:18} H_{I}= ∑_{m}∫_{-∞}^{∞} \tilde{G}_{m}(k) {b}^{m,†}_{k}{c}_{m} \dd{k} \end{equation} upon transitioning out of the rotating frame with \begin{equation} \label{eq:15} \tilde{G}_{m}(k) = \frac{gΔx}{ \sqrt{L_{A}}} ∑_{β\gtrless 0}U_{β,m} G_{β}(k)δ_{\sgn(β),\sgn(k)} \end{equation} The equation of motion for the transmission line modes become \begin{gather} \iu\dot{b}^{m}_{k} = ω^{B}_{k} b_{k}^{m,†} + \tilde{G}_{m}(k) \eu^{-\iu \tilde{ω}^{0}_{m}t}h_{m}\\ \label{eq:19} \implies b^{m}_{k}(t) = b^{m}_{k}(0) \eu^{-\iu ω_{k}^{B}t} -\iu \tilde{G}_{m}(k) ∫_{0}^{t}\eu^{-\iu ω_{k}^{B}(t-s)} \eu^{-\iu ω_{k}^{B}s}h_{m}(s)\dd{s}. \end{gather} The equation of motion for \(h_{m}\) is \begin{equation} \label{eq:21} \iu\dot{h}_{m} = ∑_{n}\bqty{V^{0}_{mn} + ε_{m}δ_{nm}}{h}_n + \underbrace{\eu^{\iu \tilde{ω}_{m}^{0}t}∫_{-∞}^{∞}\tilde{G}^\ast_{m}(k) b_{k}^{m}(t)\dd{k}}_{\equiv I}. \end{equation} Further inspection of the rightmost term in \cref{eq:21} yields \begin{equation} \label{eq:22} \begin{aligned} I &= \eu^{\iu \tilde{ω}_{m}^{0}t} ∫_{-∞}^{∞}\tilde{G}^\ast_{m}(k) b_{k}^{m}(t)\dd{k} \\ &= ∫_{-∞}^{∞}\tilde{G}^\ast_{m}(k) b_{k}^{m}(0)\eu^{-\iu ({ω}^{B}_{k} - \tilde{ω}^{0}_{m})t}\dd{k} -\iu ∫_{0}^{t}∫_{-∞}^{∞}\abs{\tilde{G}_{m}(k)}^{2} {h}_{m}(s)\eu^{-\iu {ω}^{B}_{k}(t-s)} \eu^{\iu \tilde{ω}^{0}_{m}(t-s)}\dd{k}\dd{s}\\ &=II + III. \end{aligned} \end{equation} As the RWA limits the interaction of each \(h_{m}\) to an narrow frequency/momentum band, we assume that \(\tilde{G}_{m}\) is approximately constant close to the resonance frequencies \([\tilde{ω}^{0}_{m}-λ_{m}, \tilde{ω}^{0}_{m}+λ_{m}]\) \begin{equation} \label{eq:23} \begin{aligned} \tilde{G}_{m}(k) &\approx δ_{m}\tilde{G}_{m}\pqty{\sgn(k) ω_{m}^{0}\frac{n_{B}}{c n_{A}}} = δ_{m}\frac{gΔx}{\sqrt{L_{A}}}∑_{β}U_{βm}G_{β}\pqty{\sgn(k) ω_{m}^{0}\frac{n_{B}}{c n_{A}}} δ_{\sgn(β),\sgn(k)} \\ &\equiv ∑_{β}g^{0}_{β}\sqrt{ω^{B}_{k}} U_{βm}δ_{\sgn(β),\sgn(k)} \equiv g_{m, \sgn(k)}\sqrt{ω^{B}_{k}} \end{aligned} \end{equation} in the interval (see \cref{eq:16}) where \(δ_{m}\) is a possible scaling factor to better approximate \(\tilde{G}_{m}(k)\) as a constant in \cref{eq:16}. Using this in \(I\), we obtain \begin{equation} \label{eq:24} \begin{aligned} II &= {\eu^{\iu ω_{m}^{0}t}} \bqty{g_{m,+}^\ast ∫_{0}^{∞}\sqrt{ω^{B}_{k}}b^{m}_{k}(0)\eu^{-\iu ω^{B}_{k}t}\dd{k} + g_{m,-}^\ast∫_{-∞}^{0}\sqrt{ω^{B}_{k}}b^{m}_{k}(0)\eu^{-\iu ω^{B}_{k}t}\dd{k}}\\ &\equiv {\eu^{\iu ω_{m}^{0}t}}\pqty{ g_{m,+}^\ast b_{\inputf,+}^{m}(t) + g_{m,-}^\ast b_{\inputf,-}^{m}(t)}, \end{aligned} \end{equation} where \(b_{\inputf,+(-)}^{m}(t)\) is identified as the right(left)-moving input field and is proportional to the annihilation part of the electric field. The second part of \cref{eq:22} becomes \begin{equation} \label{eq:25} III= -\iu ∫_{0}^{t}\eu^{\iu \tilde{ω}^{0}_{m}(t-s)}{h}_{m}(s) \bqty{ \abs{g_{m,+}}^{2} ∫_{0}^{∞}ω^{B}_{k}\eu^{-\iu ω^{B}_{k}(t-s)} \dd{k} + \abs{g_{m,-}}^{2} ∫_{-∞}^{0}ω^{B}_{k}\eu^{-\iu ω^{B}_{k}(t-s)} \dd{k}}\dd{s}. \end{equation} Now we use the identity \begin{equation} \label{eq:26} ∫_{0}^{∞}ω^{B}_{k}\eu^{-\iu ω^{B}_{k}(t-s)} \dd{k} = -\iu ∂_{s}\frac{n_{B}}{c} \bqty{\mathcal{P}\frac{-i}{t-s} + π δ(t-s)}, \end{equation} but neglect the principal value, as it leads only to rapidly oscillating terms that are inconsistent with the RWA, to obtain \begin{equation} \label{eq:27} \begin{aligned} III&= -2\iu η_{m}∫_{0}^{t}\eu^{\iu \tilde{ω}^{0}_m(t-s)}\bqty{\pqty{\tilde{ω}^{0}_{m}+\iu ∂_{s}}\tilde{c}_{m}(s)} δ(t-s)\dd{s}\\ &= -\iu η_{m} h_{m}(t) + \frac{η_{m}}{\tilde{ω}^{0}_{m}} \dot{h}_{m}(t) \overset{η_{m}\ll \tilde{ω}_{m}^{0},\, V\ll H_{0}}{\approx}-\iu η_{m} h_{m}(t), \end{aligned} \end{equation} where the factor \(1/2\) in the last equality stems from the fact that we only use half of the delta function and \begin{equation} \label{eq:45} η_{m}\equiv π\frac{\tilde{ω}^{0}_{m} n_{B}}{c}\bqty{\abs{g_{m,-}}^{2}+\abs{g_{m,+}}^{2}}. \end{equation} We have also neglected the correction to the eigen-energy \(η_{m}/\tilde{ω}^{0}_{m}\) for the same reason we neglected the principal value. Note that \cref{eq:45} is an incoherent sum of the couplings to the right moving and left moving fields in the transmission line. Altogether we arrive at \begin{equation} \label{eq:28} \iu\dot{h}_{m} = {∑_{n}\underbrace{\bqty{V^{0}_{mn} + \pqty{ε_{m}-\iu η_{m}}δ_{nm}}}_{\equiv H^{T}_{mn}}{h}_n + {\eu^{\iu \tilde{ω}_{m}^{0}t}} ∑_{σ=\pm}g_{m,σ}^\ast b_{\inputf,σ}^{m}(t)} . \end{equation} The usual situation is that \(b^{m}_{\inputf, -} = 0\) and we can restrict ourselves to the coupling to the right-moving input field. \subsection{Input-Output Relation and further Simplifications} \label{sec:input-outp-relat} Integrating \cref{eq:19} over all \(k\) yields \begin{equation} \label{eq:29} \begin{aligned} {b_{\outputf}^{m}(x,t)} &\equiv ∫ \sqrt{ω^{B}_{k}} b_{k}^{m}(t) \eu^{\iu k t}\dd{k}\\ &= b_{\inputf}^{m}(x, t) -\iu g_{m,\sgn(x)}\frac{\tilde{ω}^{0}_{m}π n_{B}}{c} {h}_{m}(τ(x,t))\eu^{-i \tilde{ω}^{0}_{m}τ(x,t)}Θ(τ(x,t)), \end{aligned} \end{equation} which is the input-output relation with the retarded time \begin{equation} \label{eq:20} τ(x,t)=t - \frac{\abs{x}n_{B}}{c}. \end{equation} The coupling constant accounts for the direction of propagation and the time argument is properly retarded. We defined \begin{equation} \label{eq:48} b_{\inputf}^{m}(x,t) = ∫\sqrt{ω^{B}_{k}} b_{k}^{m}(0)\eu^{\iu \pqty{kx - ω_{k}^{B}t}}\dd{k} \end{equation} used that \begin{equation} \label{eq:42} ∫_{0}^{∞}ω^{B}_{k}\eu^{-\iu ω^{B}_{k}(t-s)}\eu^{\pm\iu k x} \dd{k} = -\iu ∂_{s}\frac{n_{B}}{c} \bqty{\mathcal{P}\frac{-i}{t-s \pm \frac{x n_{B}}{c}} + π δ\pqty{t-s\mp \frac{x n_{B}}{c}}}, \end{equation} along with similar arguments to the above. The case of \(x=0\) is recovered by defining \begin{equation} \label{eq:47} \lim_{x\to0} g_{m,\sgn(x)=0} = \frac{1}{2} \pqty{g_{m,+} + g_{m,-}}, \end{equation} which amounts to taking half of each delta function in \cref{eq:42}. It shall be noted, that it is physical to assume \(x>0\), as we necessarily measure outside the fibre-coupler between transmission line and resonator. By neglecting the \(k\)-dependence of the coupling in \cref{eq:23} through invocation of the RWA we have effectively ignored length \(Δx\), but to maintain consistency with \cref{eq:44} we should assume it to be finite. We can also neglect the retardation if \(x / v_{g}\) is much smaller than a typical timescale we're interested in. To integrate \cref{eq:28}, we first diagonalize \(V^{0}_{mn} + δ_{mn}\pqty{ε_{m}-i η_{m}}\) \begin{equation} \label{eq:65} V^{0}_{mn} + δ_{mn}\pqty{ε_{m}-i η_{m}} \to ∑_{γγ'} δ_{γγ'}(ω_{γ}-\iu λ_{γ}) \end{equation} using the transformation \(O_{nγ}\) (see \cref{sec:rotating-frames}) and find \begin{equation} \label{eq:32} \dot{d}_{γ} = ∑_{m}O^{-1}_{γm}\dot{h}_{m} = -\iu\bqty{\pqty{ω_{γ} - \iu λ_{γ}}d_{γ} + ∑_{σ=\pm}∑_{m}\pqty{O^{-1}}_{γm}{g_{m,σ}^\ast } \eu^{\iu \tilde{ω}_{m}^{0}t} b_{\inputf,σ}^{m}(t)}. \end{equation} We now introduce some additional simplifications beginning with equating all input fields \(b_{\inputf}^{m}\). This is allowed, as we will transition to the classical picture later, where the commutation relations do not matter. We also assume that we're working in a region in \(m\) space, where the \(\sqrt{ω_{0}}g_{β}^{0}\approx \sqrt{κ}\) and \(\tilde{ω}^{0}_{m}\approx{ω_{0}}\), where \(ω_{0}\) is a typical frequency in the input field, can be assumed to be approximately constant. With these considerations in mind we can simplify \cref{eq:45,eq:32} to \begin{equation} \label{eq:64} η_{m}=\abs{κ}\frac{πn_{B}}{c}∑_{σ=\pm,β,β'}U_{βm}U^\ast_{β'm}δ_{\sgn(β),σ} δ_{\sgn(β'),σ} \end{equation} and \begin{gather} \label{eq:34} \dot{d}_{γ} = -\iu\bqty{\pqty{ω_{γ}-\iu λ_{γ}}d_{γ} + \sqrt{κ^\ast} ∑_{σ=\pm} U^{σ}_{γ}(t) {b_{\inputf}(t)}}\\ U^{σ}_{γ}(t) = ∑_{m,β} δ_{\sgn({β}),σ}U^\ast_{βm}\pqty{O^{-1}}_{γm}\eu^{\iu \tilde{ω}_{m}^{0}t}. \end{gather} These simplifications still capture the essence of the physics, as demonstrated in the current long-range SSH experiment. We can now proceed to integrate \cref{eq:34} to obtain \begin{equation} \label{eq:36} d_{γ}(t)= d_{γ}(0) \eu^{-\pqty{\iu ω_{γ} + {λ}_{γ}}t} - \frac{i}{\sqrt{κ}} Σ_{σ=\pm} ∫_{0}^{t}χ_{γ}(t-s) U^{σ}_{γ}(s) {b_{\inputf,σ}(t)}\dd{s} \end{equation} with \begin{equation} \label{eq:37} χ_{γ}(t) = \abs{κ} \eu^{-\pqty{\iu ω_{γ} + λ_{γ}}t}. \end{equation} When constructing the total output field, we have to remember how the separate fields \(b_{\outputf,m}\) came about. We assumed that each \(c_{m}\) only interacted with a finite range of modes (see \cref{eq:16}) in the transmission line and then just extended the resulting sub-fields back to full independent fields for simplicity. Now, we have to perform the reverse process, which amounts to summing together all system (resonator) contributions in \cref{eq:34} as these only excite the sub-fields and we can safely glue them back together. To be consistent, we have to sum together the finite ranges of the input fields which amounts to having \emph{one} whole copy of the input field. This leads us to \begin{equation} \label{eq:38} {b_{\outputf}(x,t)} \equiv b_{\inputf}(x, t) -i θ(τ(x,t)) \frac{\sqrt{κ} πn_{B}}{c} ∑_{γ}\bqty{U^{\sgn(x)}_{γ}\pqty{τ(x,t)}}^\ast d_{γ}(τ(x,t)) \end{equation} Transitioning to expectation values and using \(\ev{d_{γ}(0)}=0\) we find \begin{equation} \label{eq:39} \ev{{b_{\outputf}(x,t)}} = \ev{b_{\inputf}(x,t)} - ∑_{σ=\pm}∫_{0}^{τ(x,t)}χ_{\sgn(x),σ}(τ(x,t),s) \ev{b_{\inputf,σ}(s)} \dd{s} \end{equation} with the time non-local susceptibility for the left and right moving input fields \begin{equation} \label{eq:40} χ_{δ,σ}(t,s) = \frac{π n_{B}}{c}Θ(t) ∑_{γ}\pqty{U^{δ}_{γ}(t)}^\astχ_{γ}(t-s)U^{σ}_{γ}(s). \end{equation} For an input field with no left-moving components and a measurement position \(x>0\) we have \begin{equation} \label{eq:31} \ev{{b_{\outputf}(x>0,t)}} = \ev{b_{\inputf}(x,t)} -∫_{0}^{τ(x,t)}χ_{++}(τ(x,t),s) \ev{b_{\inputf}(s)} \dd{s}. \end{equation} with \(b_{\inputf}(s) = b_{\inputf,+}(s) + b_{\inputf,-}(s) = b_{\inputf,+}(s)\). \subsection{Langevin-Equations for Lossy Oscillators} \label{sec:lang-equat-lossy} In the above we have assumed that \(H_{0}\) is hermitian. This, however, ceases to be the case when we assume some a-priori phenomenological decay in the bare components of the system and we cannot write \(H_{0}=H^{H}_{0} - \iu η \id\) with \(H^{H}_{0}\) hermitian. To retain consistency, the decay rates have to be introduced on the level of the equations of motion of the mode operators \(a_{i,α}\) after deriving them from the hermitian Hamiltonian. The equations of motion can then still be decoupled by diagonalizing the non-hermitian that includes the phenomenological decay. We find\footnote{Assuming that the non-hermiticity is small enough for the matrix to remain diagonalizable.} \begin{equation} \label{eq:53} ∑_{iα;jβ}\pqty{T^{-1}}_{m;i,α} \pqty{H_{0}}_{i,α;j,β}T_{j,β;n} = \pqty{ω_{m}^{0}-\iu η_{m}^{0}}δ_{nm}, \end{equation} where \(T\) is the matrix whose rows are the eigenvectors of \(H_{0}\). Note that \(T\) is not unitary anymore. For notational convenience we will write \(T^{-1}_{m;i,α}\) instead of \(\pqty{T^{-1}}_{m;i,α}\) and use explicit fractions if we want to express the multiplicative inverse. The mode operators transform as \begin{equation} \label{eq:60} c_{m} = ∑_{i,α} T^{-1}_{m;i,α}a_{i,α}, \end{equation} which are \emph{not} to be identified with bosons anymore, as the non-unitarity of \(T\) breaks the bosonic commutation relations. Again, we express the modes that are in contact with the transmission line as \(a_{α}=a_{i_{0},α}\) and find \begin{equation} \label{eq:69} α_{α} = ∑_{α} T_{i_{0},α;m}c_{m} \equiv ∑_{α}U_{αm} c_{m}. \end{equation} For convenience we define \begin{equation} \label{eq:70} U^{-1}_{mα}\equiv T^{-1}_{m;i_{0}α}. \end{equation} The modulation term \(V\) transforms as \begin{equation} \label{eq:74} V_{mn}=∑_{iα;jβ}\pqty{T^{-1}}_{m;i,α} V_{i,α;j,β}T_{j,β;n}, \end{equation} and is no longer hermitian. We start by writing down the equations of motion for the original modes, assuming \(H_{0}\) to be hermitian, introduce the non-hermitian terms and express everything in terms of the \(c_{m}\) using \(T\). Subsequently, we change into a rotating frame \begin{equation} \label{eq:66} h_{m} = c_{m}\eu^{\iu \tilde{ω}^{0}_{m}t}, \end{equation} rotating away only the unitary evolution. Applying the rotating wave and first Markov approximations works out precisely as in \cref{sec:rotating-wave-first}. To account for non-unitarity we have to make the following replacements along the way \begin{align} \label{eq:68} \tilde{G}_{m}(k) &\rightarrow \tilde{G}_{m}(k)= \frac{gΔx}{\sqrt{L_{A}}} ∑_{β} U_{βm} G_{β}(k) δ_{\sgn(β),\sgn(k)}\\ \tilde{G}^\ast_{m}(k) &\rightarrow\tilde{G}^{-1}_{m}(k) = \frac{g^\astΔx}{\sqrt{L_{A}}} ∑_{β} U^{-1}_{mβ} G^\ast_{β}(k) δ_{\sgn(β),\sgn(k)}\\ g_{m,σ}&\rightarrow g_{m,σ}=∑_{β}g^{0}_{β} U_{βm}δ_{\sgn(β),σ}\\ g^\ast_{m,σ}&\rightarrow \bar{g}_{m,σ}=∑_{β}\pqty{g^{0}_{β}}^\ast U^{-1}_{mβ}δ_{\sgn(β),σ}\\ \end{align} which gives us \begin{align} \label{eq:72} η_{m}=\frac{\tilde{ω}_{m}^{0}π n_{B}}{c} ∑_{σ} g_{mσ}\bar{g}_{mσ}, \end{align} which might have an imaginary part. This leaves us with \begin{equation} \label{eq:73} \iu\dot{h}_{m} = {∑_{n}\Bqty{V^{0}_{mn} + \bqty{ε_{m}-\iu \pqty{η_{m} + η_{m}^{0}}}δ_{nm}}{h}_n + {\eu^{\iu \tilde{ω}_{m}^{0}t}} ∑_{σ=\pm}\bar{g}_{m,σ} b_{\inputf,σ}^{m}(t)}, \end{equation} where the \(η_{m}\) might shift the energies \(ε_{m}\) slightly. Diagonalizing \begin{equation} \label{eq:77} ∑_{mn}O^{-1}_{γ'm}\bqty{∑_{n}\Bqty{V^{0}_{mn}+ \bqty{ε_{m}-\iu \pqty{η_{m}^{0}+η_{m}}}δ_{nm}}h_{m}}O_{nγ} = \pqty{ω_{γ}-\iu λ_{γ}}δ_{γ,γ'} \end{equation} and defining \begin{equation} \label{eq:78} d_{γ} = ∑_{n}O^{-1}_{γn}h_{n} \implies h_{n}=∑_{γ}O_{nγ}d_{γ} \end{equation} will give us the equivalent of \cref{eq:32} \begin{equation} \label{eq:80} \dot{d}_{γ}=-\iu\pqty{ω_{γ}+\sqrt{κ^\ast}∑_{σ=\pm}U^{σ}_{γ}{b_{\inputf,σ}}}d_{γ} - λ_{γ}d_{γ} \end{equation} where we have set \(\sqrt{ω_{0}}g_{β}^{0}=\sqrt{κ}\) and defined \begin{equation} \label{eq:82} U^{σ}_{γ} = ∑_{mβ}\eu^{\iu\tilde{ω}^0_mt}O^{-1}_{γm}U^{-1}_{mβ}δ_{\sgn(β),σ}. \end{equation} This also simplifies \cref{eq:64} to \begin{equation} \label{eq:88} η_{m}=\abs{κ}\frac{πn_{B}}{c}∑_{σ=\pm,β,β'}U_{βm}U^{-1}_{mβ}δ_{\sgn(β),σ} δ_{\sgn(β'),σ}. \end{equation} Further defining \begin{align} \label{eq:83} \bar{U}^{σ}_{γ}&=∑_{mβ}\eu^{-\iu\tilde{ω}^0_mt}O_{mγ}U_{βm}δ_{\sgn(β),σ}\qq{and}& χ_{γ}&=\abs{κ}\eu^{-\pqty{\iu ω_{γ}+λ_{γ}}t}, \end{align} we obtain \begin{equation} \label{eq:86} \ev{{b_{\outputf}(x,t)}} = \ev{b_{\inputf}(x,t)} - ∑_{σ=\pm}∫_{0}^{τ(x,t)}χ_{\sgn(x),σ}(τ(x,t),s) \ev{b_{\inputf,σ}(s)} \dd{s} \end{equation} with the time non-local susceptibility for the left and right moving input fields \begin{equation} \label{eq:87} χ_{δ,σ}(t,s) = \frac{π n_{B}}{c}Θ(t) ∑_{γ}\bar{U}^{δ}_{γ}(t)χ_{γ}(t-s)U^{σ}_{γ}(s). \end{equation} These equations are essentially the same as \cref{eq:39,eq:40}, accounting for the non-unitary transformations and the apriori decay rates when diagonalizing the equations of motion for the \(h_{m}\). For completeness, we give the equivalent of \cref{eq:67} for the non-unitary case \begin{equation} \label{eq:35} \begin{array}{@{}l| c c c c@{}} & α_{β} & c_{m} & h_{n} & d_{γ}\\ \midrule a_{β} & 1 & U_{βm}\equiv T_{i_{0},β;m} & U_{βm}\eu^{-\iu \tilde{ω}^0_mt} & ∑_{m}U_{βm}O_{mγ}\eu^{-\iu \tilde{ω}^0_mt} \\ c_{m} & U^{-1}_{mβ}\equiv T^{-1}_{m;i_{0},β} & 1 & δ_{mn}\eu^{-\iu \tilde{ω}^0_mt} & O_{mγ}\eu^{-\iu \tilde{ω}^0_nt} \\ h_{n} & U^{-1}_{nβ}\eu^{\iu \tilde{ω}^0_nt} & δ_{nm}\eu^{\iu \tilde{ω}^0_mt} & 1 & O_{nγ} \\ d_{γ} & ∑_{m} U^{-1}_{mβ} O^{-1}_{γm} \eu^{\iu \tilde{ω}^0_mt} & O^{-1}_{γn} \eu^{\iu \tilde{ω}^0_mt} & O^{-1}_{γm} & 1 \\ \end{array}. \end{equation} \section{Application to the Non-Markovian Quantum Walk} \label{sec:appl-non-mark} The experimental setup for implementing the non-Markovian quantum walk discussed in~\cite{Ricottone2020,Kitagawa2010} is illustrated in \cref{fig:schematic}. The abstract system introduced in \cref{sec:micr-deriv} is replaced by a small \(S\) and a large \(B\) fibre loop with lengths \(L_{B}\gg L_{S}\). The resonant modes of the loops do have the free spectral ranges \begin{equation} \label{eq:41} \begin{aligned} Ω_{B} &= \frac{2πc}{n_{B}} & Ω_{S} &= \frac{2πc}{L_{S}}, \end{aligned} \end{equation} where \(n\) is the refractive index of the respective fibres. Attaching the transmission line to the smaller loop has the advantage that we only excite and detect what we will later identify as the \(A\) level of the non-Markovian quantum walk in momentum space. We assume that the loops share some common eigenfrequency \begin{equation} \label{eq:46} ω_{s} = n_{0}^{S}Ω_{S} = n_{0}^{B}Ω_{B}\iff \frac{n_{0}^{B}}{L_{B}} = \frac{n_{0}^{S}}{L_{S}} \end{equation} with \(n,m\gg 1\) and \(ω_{s}\) close to the frequency of the laser. We choose to index the eigenfrequencies of the loops relative to \(ω_{s}\) so that \begin{equation} \label{eq:49} \begin{aligned} ω_{n}^{X} &= ω_{s} + n Ω_{X} & k_{n}^{X} = \frac{2π}{L_{B}} n_{0}^{X} + \frac{2π}{L_{B}} n = k_{0} + \frac{2π}{L_{B}} n, \end{aligned} \end{equation} where \(X=S,B\). \begin{figure}[H] \centering \includegraphics[width=.9\textwidth]{walker_setup} \caption{\label{fig:schematic}Schematic of the experimental setup and the different frames that the input-output theory deals with. Two fibre loops \(B\) (Big) and \(S\) (small) are being coupled with strength \(δ\). The golden parts correspond to the bare modes (\(ω_{m}^{B},ω_{s}\)) being coupled to form the eigenmodes with frequencies \(ω_{m}^{0}\) of the composite \(B+S\) system. We then transition into a rotating frame (Blue) with respect to \(H_{0}\) and the \(ω^{0}_{m}\) and consider a modulation through the EOM to give us an effectively time-independent target Hamiltonian \(H^{T}_{mn}\). Diagonalizing this Hamiltonian gives us the energies \(ω_{λ}\) that we can detect when measuring the transmission (Green). Damping terms have been left out of the picture for simplicity.} \end{figure} These loops are coupled to each other with amplitude \(δ\eu^{\iu ϕ}\) which can possibly contain a phase due to the choice of the coordinate origin. Let us now assume that \begin{equation} \label{eq:50} \frac{Ω_{S}}{Ω_{B}} = 2N+1 \end{equation} with \(N\in \NN\). We denote by \(a\) the annihilation operator for the mode with \(ω=ω_{s}\) in the small loop and suppress all other modes in the small loop, as we will not populate them. The annihilation operators \(f_{n}\) destroy modes with frequencies \(ω^{B}_{n}\) in the big loop, where we limit \(n\) to the range \([-N, N]\) for the same reasons as above. This leads to the Hamiltonian \begin{equation} \label{eq:51} H_{A}= ω_{s}a^†a + ∑_{n=-N}^{N} ω_{n}^{B}f_{n}^†f_{n} + δ \pqty{\eu^{\iu ϕ}f_{0}^†a + \eu^{-\iu ϕ}a^†f_{0}} + ∑_{mn}J_{mn}(t) f_{m}^†f_{n}, \end{equation} where \(J_{mn}(t)\) is the coupling mediated by the EOM in the big loop. The phase \(ϕ=k_{0}L_{S}/2\) of the coupling stems from the location of the fibre coupler along the loop but can potentially also contain other contributions. To be bring the Hamiltonian into the form \cref{eq:1}, we define \begin{equation} \label{eq:52} \begin{aligned} c_{\pm} &= \frac{1}{\sqrt{2}}\pqty{f_{0}\eu^{-\iu ϕ} \pm a} & c_{n\neq 0}&=f_{n}\\ ω_{\pm}^{0}&=ω_{s}\pm δ & ω_{n\neq 0}&= ω_{s} + Ω_{B} n\\ V_{\pm,\pm}&=\frac{J_{00}}{2} & V_{\pm, n\neq0} &= \frac{J_{0n}}{\sqrt{2}}\eu^{\iu ϕ}\\ V_{n\neq \pm, m\neq \pm} &= J_{nm} \end{aligned} \end{equation} and obtain \begin{equation} \label{eq:54} H_{A} = ∑_{n} ω_{n}^{0}c_{n}^†c_{n} + ∑_{nm} V_{nm}(t) c_{n}^†c_{m}, \end{equation} where the index \(n\) can take on the values in \(\pqty{[-N,N]\setminus \{0\}} \cap \{+, -\}\). The spectra of the coupled and uncoupled systems are visualized in \cref{fig:spectra}. Upon transitioning into the rotating frame and applying the RWA we arrive at a target Hamiltonian \begin{equation} \label{eq:111} H^{T}_{nm}=V^{0}_{n,m} + \pqty{ε_{m} -\iu \pqty{η^{0}_{m} + η_{m}} δ_{nm}}, \end{equation} where we can control the \(V^{0}_{n,m}\) through the drive amplitudes and the \(ε_{m}\) through the drive detunings. The choice of \(δ\) will be discussed in \cref{sec:choice-hybridization} and the origin of the \(η^{0}_{m}\), as well as the effects of asymmetric loss in the two loops are investigated in \cref{sec:effects-asymm-damp}. \Cref{sec:rotat-wave-inter} is concerned with relating the \(V^{0}_{nm}\) with the drive amplitudes, frequencies and phases, whereas \cref{sec:steadyst-transm,sec:steady-state-transm} will deal with the transmission through transmission lines attached to either the small or the big loop. \tikzmath{ \Nmodes = 5; integer \NmodesBetween; \NmodesBetween = \Nmodes - 1; \delta = .2; } \begin{figure}[p] \centering \begin{tikzpicture}[y=-1.5cm] \draw[->] (-1.5, -1) -- node[left] {\(ω\)} ++(0,2); \foreach \y in {-\Nmodes,...,\Nmodes} \draw (0, \y) node[left] {\(ω^{B}_{\y}\)} -- ++(1, 0); \foreach \y/\name in {-\Nmodes/-1,0,\Nmodes/1} \draw (1.1, \y) -- ++(1, 0) node[right] {\(ω^{S}_{\name}\)}; \end{tikzpicture} \begin{tikzpicture}[y=-1.5cm] \foreach \y in {-\NmodesBetween,...,-1} \draw (0, \y) node[left] {\(ω^{0}_{\y}\)} -- ++(1, 0); \foreach \y in {1,...,\NmodesBetween} \draw (0, \y) node[left] {\(ω^{0}_{\y}\)} -- ++(.5, 0) node(mc\y){} -- ++(.5, 0) node(mr\y){}; \foreach \y in {-\Nmodes,\Nmodes} { \foreach \sub/\name in {-\delta/-, \delta/+} \draw (0, \sub+\y) -- ++(.5, 0) -- ++(.5, 0); } \foreach \y in {0} { \foreach \sub/\name in {-\delta/-, \delta/+} \draw (0, \sub+\y) node[left] {\(ω^{0}_{\name}\)} -- ++(.5, 0) node(pmc\name){} -- ++(.5, 0) node[right] (pmr\name){}; } \foreach \y in {-\Nmodes,0,\Nmodes} \draw[dashed,color=gray] (0, \y) -- ++(1, 0); \draw[<->] (pmc+) -- node[right] {\(2δ\)} (pmc-); \draw[<->] (pmc+) -- node[right] {\(Ω_{B} - δ\)} (mc1); \draw[<->] (mc1) -- node[right] {\(Ω_{B}\)} (mc2); \end{tikzpicture} \caption{\label{fig:spectra}The spectra of the uncoupled loops (left) \(B,S\) and the resulting spectrum after coupling the loops (right) for \(N=2\) and \(δ=Ω_{B}/5\).} \end{figure} \subsection{The Choice of the Hybridization Amplitude} \label{sec:choice-hybridization} It remains to be discussed which choice of \(δ\) is suitable. By modulating \(V(t)\) and applying the RWA we can couple certain levels in the spectrum of the system. To be able to couple one level to many and implement the non-Markovian quantum walk, we have to select out unique level-spacings. At the same time, we want to maximize the frequency of the residual rotating terms. A suitable mode for this one-to-many coupling is the \(c_{+}\) mode with frequency \(ω_{+}^{0}=ω_{s}+δ\). We identify the \(A\) site of the non-Markovian Quantum Walk in \(k\)-space with \(c_{+}\) and the \(j\)th bath level with \(c_{j}\) (\(j\in [1, N]\)). Let us denote the frequency difference of the \(m\)th and \(n\)th mode by \(Δ_{nm}=ω^{0}_{n}-ω^{0}_{m}\). For \(n>m\) we have \begin{align} \label{eq:56} Δ_{+,-}&=2δ\\ \label{eq:57}Δ_{n>0,-} &= n Ω_{B} + δ\\ \label{eq:58}Δ_{n>0,+} &= n Ω_{B} - δ\\ \label{eq:59}Δ_{n>0,m>0} &= (n-m) Ω_{B}. \end{align} To couple exactly one other mode with \(n>0\) to the \(+\) mode, the RWA requires that \(\abs{Δ_{n,+}}\neq \abs{Δ_{kl}}\) for \(k\neq n\), \(l\neq +\). This requirement yields the following restrictions on the value of \(δ\) \begin{align} \label{eq:61} δ&\neq \frac{n}{2}Ω_{B} & \text{\cref{eq:58,eq:57}}\\ δ&\neq \frac{n}{3}Ω_{B} & \text{\cref{eq:58,eq:56}}\\ δ&\neq {n}Ω_{B} & \text{\cref{eq:58,eq:59}\footnote{Duh!}}. \end{align} To maximize the residual rotating terms, the minimum of the \cref{eq:56,eq:57,eq:58,eq:59} has to be maximized for \(δ \in [0, Ω_{B}]\) \begin{equation} \label{eq:62} Δ_{\max}\equiv \max_{δ}Δ_{\min}(δ) = \max_{δ}\min\Bqty{2δ, \abs{Ω_{B}-δ}, \abs{Ω_{B}-3δ}, \abs{2Ω_{B}-3δ}, \abs{Ω_{B}-2δ}}. \end{equation} We find that \(Δ_{\max}=2Ω_{B}/5\) for \begin{equation} \label{eq:63} δ_{\mathrm{opt}}=Ω_{B}/5, \end{equation} as can be ascertained from \cref{fig:delta_choice}. \begin{figure}[H] \centering \begin{tikzpicture} \begin{axis}[ scale only axis=true, width=.8\columnwidth, height=.2\columnwidth, xmin = 0, xmax = 1, ymin = 0, ymax = .5, axis lines* = left, xtick = {0}, ytick = \empty, clip = false, xtick={},ytick={}, minor tick num=5, grid=both, grid style={line width=.1pt, draw=gray!10}, major grid style={line width=.2pt,draw=gray!50}, axis lines=middle, ylabel = {\(Δ_{\min}/Ω_{B}\)}, xlabel = {\(δ/Ω_{B}\)}, x label style={at={(axis description cs:0.5,-0.2)},anchor=north}, y label style={at={(axis description cs:-0.06,.5)},rotate=90,anchor=south}, ] \addplot[domain = 0:1, restrict y to domain = 0:1, samples = 1000]{min(2*x, 1-x, abs(1-3*x), abs(2-3*x), abs(1-2*x))}; \addplot[color = black, mark = *, only marks, mark size = 3pt] coordinates {(.2, .4)}; \addplot[color = black, dashed, thick] coordinates {(.2, 0) (.2, .4) (0, .4)}; \addplot[color = gray, mark = *, only marks, mark size = 3pt] coordinates {(.25, .25)}; \addplot[color = gray, dashed, thick] coordinates {(.25, 0) (.25, .25) (0, .25)}; \end{axis} \end{tikzpicture} \caption{\label{fig:delta_choice} The minimal rotating frequencies \cref{eq:62} for the range of possible \(δ\). The black marker highlights \(δ=Ω_{B}/5\) and the grey marker marks \(δ=Ω_{B}/4\).} \end{figure} \subsection{Effects of Asymmetric Damping} \label{sec:effects-asymm-damp} In the above, we have not accounted for the apriori damping in the fibre loops. As they are of vastly differing lengths, it is sensible to expect different damping rates for each. To account for this, we modify \cref{eq:51} to \begin{equation} \label{eq:89} \begin{aligned} H_{A}= ω_{s}a_{S,0}^†a_{S,0} &+ ∑_{n=-N}^{N} ω_{n}^{B}a_{B,n}^†a_{B,n} + δ \pqty{\eu^{\iu ϕ}a_{B,0}^†a_{S,0} + \eu^{-\iu ϕ}a_{S,0}^†a_{B,0}} + ∑_{mn}J_{mn}(t) a_{B,m}^†a_{B,n} \\&- \iu η_{S}a_{S,0}^†a_{S,0} - \iu \pqty{η_{S}+2Δδ} ∑_{n}a_{B,n}^†a_{B,n} \end{aligned} \end{equation} with the damping rates \(η_{S}\) and the damping asymmetry \(\abs{Δ}< 1\). The diagonalizing transformation is then {\renewcommand\arraystretch{1.5} \begin{equation} \label{eq:90} \begin{aligned} T_{i,0;\mp} &\triangleq \frac{1}{\sqrt{2}} \begin{pmatrix} -\eu^{-\iu ψ} & \eu^{\iu ψ} \\ \eu^{\iu ϕ} & \eu^{\iu ϕ} \end{pmatrix} & T^{-1}_{\mp;i,0} &\triangleq \frac{1}{\sqrt{2}\cos(ψ)} \begin{pmatrix} -1 & \eu^{-\iu (ϕ-ψ)}\\ 1 & \eu^{-\iu (ϕ+ψ)} \end{pmatrix} \end{aligned} \end{equation}} with \(i=B,S\) and \begin{equation} \label{eq:93} \eu^{\iu ψ} \equiv \iu Δ + \sqrt{1-Δ^{2}} \implies ψ = \sin^{-1}(Δ). \end{equation} For all other matrix elements \(T\) equals the identity \begin{equation} \label{eq:95} T_{i,α;m} = T^{-1}_{m;i,α} = δ_{i,B} δ_{αm} \end{equation} for \(m\neq\pm\). With this, we have for \(m=\pm,-N,-N+1,\ldots,-1,1,2,\ldots,N\) \begin{equation} \label{eq:94} \begin{aligned} ω^{0}_{m\neq \pm} &= ω_{n}^{B} & ω^{0}_{\pm} &= ω_{s} \pm δ \cos(ψ)\\ η^{0}_{m\neq\pm} &= η_{B} = η_S+2δΔ & η^{0}_{\pm} &= η_{S} + δΔ = \frac{η_{S}+ η_{B}}{2}. \end{aligned} \end{equation} Note that the eigenenergies of the \(\pm\) modes are slightly shifted. Next, we compute the transformation of the interaction \(T^{-1}VT\) (see \cref{eq:74}) and find \begin{equation} \label{eq:96} \begin{aligned} V_{\pm,n\not\in \{+,-\}} &= \frac{J_{0,n}}{\sqrt{2}\cos(ψ)}\eu^{-\iu(ϕ\pm ψ)} & V_{n\not\in \{+,-\},\pm}&= \frac{J_{n,0}}{\sqrt{2}}\eu^{\iu ϕ} & V_{n\neq \pm, m\neq \pm} &= J_{nm} \\ V_{+,-}&=\frac{J_{00}}{2\cos(ψ)}\eu^{-\iu ψ} & V_{-,+} &=\frac{J_{00}}{2\cos(ψ)}\eu^{\iu ψ}. \end{aligned} \end{equation} Evidently, the matrix \(T^{-1}VT\) is not hermitian except in the limit \(Δ\to 0\). In all of the above one can set \(\cos(ψ)=1\) to only account for \(Δ\) in leading order. \subsection{Rotating-Wave Interaction} \label{sec:rotat-wave-inter} The modulation term in \cref{eq:89} can be written as \begin{equation} \label{eq:103} V_{nm}(t) = \hat{V}_{nm} f(t), \end{equation} where \(f(t)\) is proportional to the voltage applied to the EOM. Note that \(V_{nm}\) is already expressed in the basis of the \(c_{m}\) (see \cref{eq:96}). Let us now assume that the voltage modulation takes the form of \begin{equation} \label{eq:104} f(t)=∑_{j}\frac{\hat{f}_{j}}{2} \sin\qty[\pqty{\hat{ω}_{j}+\hat{δ}_{j}}t + \varphi_{j}] = -\iu ∑_{j}\hat{f}_{j}\bqty{\eu^{\iu \pqty{\hat{ω}_{j}+\hat{δ}_{j}}t}\eu^{\iu \varphi} - \eu^{-\iu \pqty{\hat{ω}_{j}+\hat{δ}_{j}}t}\eu^{-\iu \varphi_{j}}}. \end{equation} Transforming into the rotating frame of the \({h}_{m}\) (see \cref{eq:66}), we have \begin{equation} \label{eq:105} \tilde{V}_{mn}=-\iu ∑_{j}\hat{V}_{mn}\hat{f}_{i}\bqty{\eu^{i \pqty{\hat{ω_{j}} +\hat{δ}_{j} - \pqty{ω^{0}_{n}-ω^{0}_{m} + ε_{m}-ε_{n}}}t} \eu^{\iu \varphi_{j}} - \eu^{-i \pqty{\hat{ω_{j}} + \hat{δ}_{j}+\pqty{ω^{0}_{n}-ω^{0}_{m} + ε_{m}-ε_{n}}}t} \eu^{-\iu \varphi_{j}}}. \end{equation} As discussed in \cref{sec:choice-hybridization}, we want to couple the \(+\) and \(m\neq \pm\). Comparing with \cref{eq:12}, we set \begin{align} \label{eq:107} \hat{ω_{j}}&=ω^{0}_{j} - ω^{0}_{+} = - \pqty{ω^{0}_{-j} - ω^{0}_{-}}& \hat{δ}_{j} = ε_{+}-ε_{j} \end{align} where \(0