mirror of
https://github.com/vale981/notes_io_loop
synced 2025-03-05 09:31:41 -05:00
add some notes on non-markov. quantum walk
This commit is contained in:
parent
dae2dd1f12
commit
f888305cb5
2 changed files with 250 additions and 8 deletions
|
@ -33,12 +33,12 @@ linkcolor=blue,
|
|||
\usepackage{fontspec}
|
||||
\usepackage{unicode-math}
|
||||
\setmainfont[Ligatures={Common,Rare,TeX,Required}]{texgyrepagella}[
|
||||
Extension = .otf,
|
||||
UprightFont = *-regular,
|
||||
BoldFont = *-bold,
|
||||
ItalicFont = *-italic,
|
||||
BoldItalicFont = *-bolditalic,
|
||||
]
|
||||
Extension = .otf,
|
||||
UprightFont = *-regular,
|
||||
BoldFont = *-bold,
|
||||
ItalicFont = *-italic,
|
||||
BoldItalicFont = *-bolditalic,
|
||||
]
|
||||
\setmathfont{texgyrepagella-math.otf}
|
||||
\KOMAoptions{DIV=last}
|
||||
\usepackage[autooneside]{scrlayer-scrpage}
|
||||
|
@ -99,3 +99,8 @@ linkcolor=blue,
|
|||
|
||||
% large integrals
|
||||
\everydisplay{\Umathoperatorsize\displaystyle=5ex}
|
||||
|
||||
% working setminus
|
||||
\AtBeginDocument{% to do this after unicode-math has done its work
|
||||
\renewcommand{\setminus}{\mathbin{\backslash}}%
|
||||
}
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
\documentclass[fontsize=11pt,paper=a4,open=any,
|
||||
twoside=no,toc=listof,toc=bibliography,headings=optiontohead,
|
||||
captions=nooneline,captions=tableabove,english,DIV=15,numbers=noenddot,final,parskip=half-,
|
||||
captions=nooneline,captions=tableabove,english,DIV=12,numbers=noenddot,final,parskip=half-,
|
||||
headinclude=true,footinclude=false,BCOR=0mm]{scrartcl}
|
||||
\pdfvariable suppressoptionalinfo 512\relax
|
||||
\synctex=1
|
||||
|
@ -10,12 +10,16 @@ headinclude=true,footinclude=false,BCOR=0mm]{scrartcl}
|
|||
\usepackage{hiromacros}
|
||||
\addbibresource{references.bib}
|
||||
|
||||
\title{Input-Output Theory for Modulated Fibre-Loops}
|
||||
\title{Input-Output Theory for Modulated Optical Fibre Resonators}
|
||||
\date{2023}
|
||||
\graphicspath{{graphics}}
|
||||
|
||||
\newcommand{\inputf}[0]{\ensuremath{\mathrm{in}}}
|
||||
\newcommand{\outputf}[0]{\ensuremath{\mathrm{out}}}
|
||||
\usetikzlibrary{math}
|
||||
\usetikzlibrary{external}
|
||||
\tikzexternalize[prefix=tikz/]
|
||||
\usepackage{pgfplots}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
@ -537,6 +541,239 @@ position \(x>0\) we have
|
|||
\end{equation}
|
||||
with \(b_{\inputf}(s) = b_{\inputf,+}(s) + b_{\inputf,-}(s) = b_{\inputf,+}(s)\).
|
||||
|
||||
\section{Application to the Non-Markovian Quantum Walk}
|
||||
\label{sec:appl-non-mark}
|
||||
The experimental setup for implementing the non-Markovian quantum walk
|
||||
discussed in~\cite{Ricottone2020,Kitagawa2010} is illustrated in
|
||||
\cref{fig:schematic}. The abstract system introduced in
|
||||
\cref{sec:micr-deriv} is replaced by a small \(S\) and a large \(B\)
|
||||
fibre loop with lengths \(L_{B}\gg L_{S}\). The resonant modes of the
|
||||
loops do have the free spectral ranges
|
||||
\begin{equation}
|
||||
\label{eq:41}
|
||||
\begin{aligned}
|
||||
Ω_{B} &= \frac{2πc}{n_{B}} & Ω_{S} &= \frac{2πc}{L_{S}},
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
where \(n\) is the refractive index of the respective fibres.
|
||||
\begin{figure}[htp]
|
||||
\centering
|
||||
\includegraphics{walker_setup}
|
||||
\caption{\label{fig:schematic}Schematic of the experimental setup.}
|
||||
\end{figure}
|
||||
Attaching the transmission line to the smaller loop has the advantage
|
||||
that we only excite and detect what we will later identify as the
|
||||
\(A\) level of the non-Markovian quantum walk in momentum space.
|
||||
|
||||
We assume that the loops share some common eigenfrequency
|
||||
\begin{equation}
|
||||
\label{eq:46}
|
||||
ω_{s} = n_{0}^{S}Ω_{S} = n_{0}^{B}Ω_{B}\iff \frac{n_{0}^{B}}{L_{B}}
|
||||
= \frac{n_{0}^{S}}{L_{S}}
|
||||
\end{equation}
|
||||
with \(n,m\gg 1\) and \(ω_{s}\) close to the frequency of the
|
||||
laser. We choose to index the eigenfrequencies of the loops relative
|
||||
to \(ω_{s}\) so that
|
||||
\begin{equation}
|
||||
\label{eq:49}
|
||||
\begin{aligned}
|
||||
ω_{n}^{X} &= ω_{s} + n Ω_{X} & k_{n}^{X} = \frac{2π}{L_{B}}
|
||||
n_{0}^{X} + \frac{2π}{L_{B}} n = k_{0} + \frac{2π}{L_{B}} n,
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
where \(X=S,B\).
|
||||
|
||||
These loops are coupled to each other with amplitude \(δ\eu^{\iu ϕ}\) which can
|
||||
possibly contain a phase due to the choice of the coordinate
|
||||
origin. Let us now assume that
|
||||
\begin{equation}
|
||||
\label{eq:50}
|
||||
\frac{Ω_{S}}{Ω_{B}} = 2N+1
|
||||
\end{equation}
|
||||
with \(N\in \NN\). We denote by \(a\) the annihilation operator for the
|
||||
mode with \(ω=ω_{s}\) in the small loop and suppress all other modes
|
||||
in the small loop, as we will not populate them. The annihilation
|
||||
operators \(f_{n}\) destroy modes with frequencies \(ω^{B}_{n}\) in
|
||||
the big loop, where we limit \(n\) to the range \([-N, N]\) for the
|
||||
same reasons as above.
|
||||
This leads to the Hamiltonian
|
||||
\begin{equation}
|
||||
\label{eq:51}
|
||||
H_{A}= ω_{s}a^†a + ∑_{n=-N}^{N} ω_{n}^{B}f_{n}^†f_{n} + δ \pqty{\eu^{\iu
|
||||
ϕ}f_{0}^†a + \eu^{-\iu ϕ}a^†f_{0}} + ∑_{mn}J_{mn}(t) f_{m}^†f_{n},
|
||||
\end{equation}
|
||||
where \(J_{mn}(t)\) is the coupling mediated by the EOM in the big
|
||||
loop. The phase \(ϕ=k_{0}L_{S}/2\) of the coupling stems from the
|
||||
location of the fibre coupler along the loop but can potentially also
|
||||
contain other contributions.
|
||||
|
||||
To be bring the Hamiltonian into the form \cref{eq:1}, we define
|
||||
\begin{equation}
|
||||
\label{eq:52}
|
||||
\begin{aligned}
|
||||
c_{\pm} &= \frac{1}{\sqrt{2}}\pqty{f_{0}\eu^{-\iu ϕ} \pm a} &
|
||||
c_{n\neq
|
||||
0}&=f_{n}\\
|
||||
ω_{\pm}^{0}&=ω_{s}\pm δ & ω_{n\neq 0}&= ω_{s} + Ω_{B} n\\
|
||||
V_{\pm,\pm}&=\frac{J_{00}}{2} & V_{\pm, n\neq0} &=
|
||||
\frac{J_{0n}}{\sqrt{2}}\eu^{\iu
|
||||
ϕ}\\
|
||||
V_{n\neq \pm, m\neq \pm} &= J_{nm}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
and obtain
|
||||
\begin{equation}
|
||||
\label{eq:54}
|
||||
H_{A} = ∑_{n} ω_{n}^{0}c_{n}^†c_{n} + ∑_{nm} V_{nm}(t) c_{n}^†c_{m},
|
||||
\end{equation}
|
||||
where the index \(n\) can take on the values in
|
||||
\(\pqty{[-N,N]\setminus \{0\}} \cap \{+, -\}\). The spectra of the
|
||||
coupled and uncoupled systems are visualized in \cref{fig:spectra}.
|
||||
|
||||
\tikzmath{
|
||||
\Nmodes = 5;
|
||||
integer \NmodesBetween;
|
||||
\NmodesBetween = \Nmodes - 1;
|
||||
\delta = .2;
|
||||
}
|
||||
\begin{figure}[p]
|
||||
\centering
|
||||
\begin{tikzpicture}[y=-1.5cm]
|
||||
\draw[->] (-1.5, -1) -- node[left] {\(ω\)} ++(0,2);
|
||||
|
||||
\foreach \y in {-\Nmodes,...,\Nmodes}
|
||||
\draw (0, \y) node[left] {\(ω^{B}_{\y}\)} -- ++(1, 0);
|
||||
|
||||
\foreach \y/\name in {-\Nmodes/-1,0,\Nmodes/1}
|
||||
\draw (1.1, \y) -- ++(1, 0) node[right] {\(ω^{S}_{\name}\)};
|
||||
\end{tikzpicture}
|
||||
\begin{tikzpicture}[y=-1.5cm]
|
||||
\foreach \y in {-\NmodesBetween,...,-1}
|
||||
\draw (0, \y) node[left] {\(ω^{0}_{\y}\)} -- ++(1, 0);
|
||||
|
||||
\foreach \y in {1,...,\NmodesBetween}
|
||||
\draw (0, \y) node[left] {\(ω^{0}_{\y}\)} -- ++(.5, 0) node(mc\y){}
|
||||
-- ++(.5, 0) node(mr\y){};
|
||||
|
||||
\foreach \y in {-\Nmodes,\Nmodes} {
|
||||
\foreach \sub/\name in {-\delta/-, \delta/+}
|
||||
\draw (0, \sub+\y) -- ++(.5, 0) -- ++(.5, 0);
|
||||
}
|
||||
|
||||
\foreach \y in {0} {
|
||||
\foreach \sub/\name in {-\delta/-, \delta/+}
|
||||
\draw (0, \sub+\y) node[left] {\(ω^{0}_{\name}\)} -- ++(.5, 0) node(pmc\name){} -- ++(.5, 0) node[right] (pmr\name){};
|
||||
}
|
||||
|
||||
\foreach \y in {-\Nmodes,0,\Nmodes}
|
||||
\draw[dashed,color=gray] (0, \y) -- ++(1, 0);
|
||||
|
||||
\draw[<->] (pmc+) -- node[right] {\(2δ\)} (pmc-);
|
||||
\draw[<->] (pmc+) -- node[right] {\(Ω_{B} - δ\)} (mc1);
|
||||
\draw[<->] (mc1) -- node[right] {\(Ω_{B}\)} (mc2);
|
||||
\end{tikzpicture}
|
||||
\caption{\label{fig:spectra}The spectra of the uncoupled loops (left) \(B,S\) and the resulting
|
||||
spectrum after coupling the loops (right) for \(N=2\) and \(δ=Ω_{B}/5\).}
|
||||
\end{figure}
|
||||
|
||||
\subsection{The Choice of the Hybridization Amplitude}
|
||||
\label{sec:choice-hybridization}
|
||||
|
||||
It remains to be discussed which choice of \(δ\) is suitable. By
|
||||
modulating \(V(t)\) and applying the RWA we can couple certain levels
|
||||
in the spectrum of the system. To be able to couple one level to many
|
||||
and implement the non-Markovian quantum walk, we have to select out
|
||||
unique level-spacings. At the same time, we want to maximize the
|
||||
frequency of the residual rotating terms.
|
||||
|
||||
A suitable mode for this one-to-many coupling is the \(c_{+}\) mode
|
||||
with frequency \(ω_{+}^{0}=ω_{s}+δ\). We identify the \(A\) site of
|
||||
the non-Markovian Quantum Walk in \(k\)-space with \(c_{+}\) and the
|
||||
\(j\)th bath level with \(c_{j}\) (\(j\in [1, N]\)).
|
||||
|
||||
Let us denote the frequency
|
||||
difference of the \(m\)th and \(n\)th mode by
|
||||
\(Δ_{nm}=ω^{0}_{n}-ω^{0}_{m}\).
|
||||
For \(n>m\) we have
|
||||
\begin{align}
|
||||
\label{eq:56}
|
||||
Δ_{+,-}&=2δ\\
|
||||
\label{eq:57}Δ_{n>0,-} &= n Ω_{B} + δ\\
|
||||
\label{eq:58}Δ_{n>0,+} &= n Ω_{B} - δ\\
|
||||
\label{eq:59}Δ_{n>0,m>0} &= (n-m) Ω_{B} - δ.
|
||||
\end{align}
|
||||
To couple exactly one other mode with \(n>0\) to the \(+\) mode, the
|
||||
RWA requires that \(\abs{Δ_{n,+}}\neq \abs{Δ_{kl}}\) for \(k\neq n\), \(l\neq +\).
|
||||
This requirement yields the following restrictions on the value of
|
||||
\(δ\)
|
||||
\begin{align}
|
||||
\label{eq:61}
|
||||
δ&\neq \frac{n}{2}Ω_{B} & \text{\cref{eq:58,eq:57}}\\
|
||||
δ&\neq \frac{n}{3}Ω_{B} & \text{\cref{eq:58,eq:56}}\\
|
||||
δ&\neq {n}Ω_{B} & \text{\cref{eq:58,eq:59}\footnote{Duh!}}.
|
||||
\end{align}
|
||||
To maximize the residual rotating terms, the minimum of the
|
||||
\cref{eq:56,eq:57,eq:58,eq:59} has to be maximized for \(δ \in [0, Ω_{B}]\)
|
||||
\begin{equation}
|
||||
\label{eq:62}
|
||||
Δ_{\max}\equiv \max_{δ}Δ_{\min}(δ) = \max_{δ}\min\Bqty{2δ, \abs{Ω_{B}-δ}, \abs{Ω_{B}-3δ},
|
||||
\abs{2Ω_{B}-3δ}, \abs{Ω_{B}-2δ}}.
|
||||
\end{equation}
|
||||
We find that \(Δ_{\max}=Ω_{B}/4\) for
|
||||
\begin{equation}
|
||||
\label{eq:63}
|
||||
δ_{\mathrm{opt}}=Ω_{B}/5,
|
||||
\end{equation}
|
||||
as can be ascertained from \cref{fig:delta_choice}.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
scale only axis=true,
|
||||
width=.8\columnwidth,
|
||||
height=.2\columnwidth,
|
||||
xmin = 0, xmax = 1,
|
||||
ymin = 0, ymax = .5,
|
||||
axis lines* = left,
|
||||
xtick = {0}, ytick = \empty,
|
||||
clip = false,
|
||||
xtick={},ytick={},
|
||||
tick num = 10,
|
||||
minor tick num=5,
|
||||
grid=both,
|
||||
grid style={line width=.1pt, draw=gray!10},
|
||||
major grid style={line width=.2pt,draw=gray!50},
|
||||
axis lines=middle,
|
||||
ylabel = {\(Δ_{\min}/Ω_{B}\)},
|
||||
xlabel = {\(δ/Ω_{B}\)},
|
||||
x label style={at={(axis description cs:0.5,-0.2)},anchor=north},
|
||||
y label style={at={(axis description cs:-0.06,.5)},rotate=90,anchor=south},
|
||||
]
|
||||
\addplot[domain = 0:1, restrict y to domain = 0:1, samples =
|
||||
1000, color = cerulean]{min(2*x, 1-x, abs(1-3*x), abs(2-3*x),
|
||||
abs(1-2*x))};
|
||||
\addplot[color = black, mark = *, only marks, mark size = 3pt]
|
||||
coordinates {(.2, .4)};
|
||||
\addplot[color = black, dashed, thick] coordinates {(.2, 0) (.2,
|
||||
.4) (0, .4)};
|
||||
|
||||
\addplot[color = gray, mark = *, only marks, mark size = 3pt]
|
||||
coordinates {(.25, .25)};
|
||||
\addplot[color = gray, dashed, thick] coordinates {(.25, 0) (.25,
|
||||
.25) (0, .25)};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\caption{\label{fig:delta_choice} The minimal rotating frequencies
|
||||
\cref{eq:62} for the range of possible \(δ\). The black marker
|
||||
highlights \(δ=Ω_{B}/5\) and the grey marker marks \(δ=Ω_{B}/4\).}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Steady-state Transmission}
|
||||
\label{sec:steadyst-transm}
|
||||
|
||||
TBD (already manually)
|
||||
|
||||
|
||||
|
||||
\newpage
|
||||
\printbibliography{}
|
||||
|
|
Loading…
Add table
Reference in a new issue