add some notes on non-markov. quantum walk

This commit is contained in:
Valentin Boettcher 2023-06-14 11:59:35 -04:00
parent dae2dd1f12
commit f888305cb5
2 changed files with 250 additions and 8 deletions

View file

@ -99,3 +99,8 @@ linkcolor=blue,
% large integrals
\everydisplay{\Umathoperatorsize\displaystyle=5ex}
% working setminus
\AtBeginDocument{% to do this after unicode-math has done its work
\renewcommand{\setminus}{\mathbin{\backslash}}%
}

View file

@ -1,6 +1,6 @@
\documentclass[fontsize=11pt,paper=a4,open=any,
twoside=no,toc=listof,toc=bibliography,headings=optiontohead,
captions=nooneline,captions=tableabove,english,DIV=15,numbers=noenddot,final,parskip=half-,
captions=nooneline,captions=tableabove,english,DIV=12,numbers=noenddot,final,parskip=half-,
headinclude=true,footinclude=false,BCOR=0mm]{scrartcl}
\pdfvariable suppressoptionalinfo 512\relax
\synctex=1
@ -10,12 +10,16 @@ headinclude=true,footinclude=false,BCOR=0mm]{scrartcl}
\usepackage{hiromacros}
\addbibresource{references.bib}
\title{Input-Output Theory for Modulated Fibre-Loops}
\title{Input-Output Theory for Modulated Optical Fibre Resonators}
\date{2023}
\graphicspath{{graphics}}
\newcommand{\inputf}[0]{\ensuremath{\mathrm{in}}}
\newcommand{\outputf}[0]{\ensuremath{\mathrm{out}}}
\usetikzlibrary{math}
\usetikzlibrary{external}
\tikzexternalize[prefix=tikz/]
\usepackage{pgfplots}
\begin{document}
\maketitle
@ -537,6 +541,239 @@ position \(x>0\) we have
\end{equation}
with \(b_{\inputf}(s) = b_{\inputf,+}(s) + b_{\inputf,-}(s) = b_{\inputf,+}(s)\).
\section{Application to the Non-Markovian Quantum Walk}
\label{sec:appl-non-mark}
The experimental setup for implementing the non-Markovian quantum walk
discussed in~\cite{Ricottone2020,Kitagawa2010} is illustrated in
\cref{fig:schematic}. The abstract system introduced in
\cref{sec:micr-deriv} is replaced by a small \(S\) and a large \(B\)
fibre loop with lengths \(L_{B}\gg L_{S}\). The resonant modes of the
loops do have the free spectral ranges
\begin{equation}
\label{eq:41}
\begin{aligned}
Ω_{B} &= \frac{2πc}{n_{B}} & Ω_{S} &= \frac{2πc}{L_{S}},
\end{aligned}
\end{equation}
where \(n\) is the refractive index of the respective fibres.
\begin{figure}[htp]
\centering
\includegraphics{walker_setup}
\caption{\label{fig:schematic}Schematic of the experimental setup.}
\end{figure}
Attaching the transmission line to the smaller loop has the advantage
that we only excite and detect what we will later identify as the
\(A\) level of the non-Markovian quantum walk in momentum space.
We assume that the loops share some common eigenfrequency
\begin{equation}
\label{eq:46}
ω_{s} = n_{0}^{S}Ω_{S} = n_{0}^{B}Ω_{B}\iff \frac{n_{0}^{B}}{L_{B}}
= \frac{n_{0}^{S}}{L_{S}}
\end{equation}
with \(n,m\gg 1\) and \(ω_{s}\) close to the frequency of the
laser. We choose to index the eigenfrequencies of the loops relative
to \(ω_{s}\) so that
\begin{equation}
\label{eq:49}
\begin{aligned}
ω_{n}^{X} &= ω_{s} + n Ω_{X} & k_{n}^{X} = \frac{}{L_{B}}
n_{0}^{X} + \frac{}{L_{B}} n = k_{0} + \frac{}{L_{B}} n,
\end{aligned}
\end{equation}
where \(X=S,B\).
These loops are coupled to each other with amplitude \(δ\eu^{\iu ϕ}\) which can
possibly contain a phase due to the choice of the coordinate
origin. Let us now assume that
\begin{equation}
\label{eq:50}
\frac{Ω_{S}}{Ω_{B}} = 2N+1
\end{equation}
with \(N\in \NN\). We denote by \(a\) the annihilation operator for the
mode with \(ω=ω_{s}\) in the small loop and suppress all other modes
in the small loop, as we will not populate them. The annihilation
operators \(f_{n}\) destroy modes with frequencies \(ω^{B}_{n}\) in
the big loop, where we limit \(n\) to the range \([-N, N]\) for the
same reasons as above.
This leads to the Hamiltonian
\begin{equation}
\label{eq:51}
H_{A}= ω_{s}a^†a + ∑_{n=-N}^{N} ω_{n}^{B}f_{n}^†f_{n} + δ \pqty{\eu^{\iu
ϕ}f_{0}^†a + \eu^{-\iu ϕ}a^†f_{0}} + ∑_{mn}J_{mn}(t) f_{m}^†f_{n},
\end{equation}
where \(J_{mn}(t)\) is the coupling mediated by the EOM in the big
loop. The phase \(ϕ=k_{0}L_{S}/2\) of the coupling stems from the
location of the fibre coupler along the loop but can potentially also
contain other contributions.
To be bring the Hamiltonian into the form \cref{eq:1}, we define
\begin{equation}
\label{eq:52}
\begin{aligned}
c_{\pm} &= \frac{1}{\sqrt{2}}\pqty{f_{0}\eu^{-\iu ϕ} \pm a} &
c_{n\neq
0}&=f_{n}\\
ω_{\pm}^{0}&_{s}\pm δ & ω_{n\neq 0}&= ω_{s} + Ω_{B} n\\
V_{\pm,\pm}&=\frac{J_{00}}{2} & V_{\pm, n\neq0} &=
\frac{J_{0n}}{\sqrt{2}}\eu^{\iu
ϕ}\\
V_{n\neq \pm, m\neq \pm} &= J_{nm}
\end{aligned}
\end{equation}
and obtain
\begin{equation}
\label{eq:54}
H_{A} = ∑_{n} ω_{n}^{0}c_{n}^†c_{n} + ∑_{nm} V_{nm}(t) c_{n}^†c_{m},
\end{equation}
where the index \(n\) can take on the values in
\(\pqty{[-N,N]\setminus \{0\}} \cap \{+, -\}\). The spectra of the
coupled and uncoupled systems are visualized in \cref{fig:spectra}.
\tikzmath{
\Nmodes = 5;
integer \NmodesBetween;
\NmodesBetween = \Nmodes - 1;
\delta = .2;
}
\begin{figure}[p]
\centering
\begin{tikzpicture}[y=-1.5cm]
\draw[->] (-1.5, -1) -- node[left] {\(ω\)} ++(0,2);
\foreach \y in {-\Nmodes,...,\Nmodes}
\draw (0, \y) node[left] {\(ω^{B}_{\y}\)} -- ++(1, 0);
\foreach \y/\name in {-\Nmodes/-1,0,\Nmodes/1}
\draw (1.1, \y) -- ++(1, 0) node[right] {\(ω^{S}_{\name}\)};
\end{tikzpicture}
\begin{tikzpicture}[y=-1.5cm]
\foreach \y in {-\NmodesBetween,...,-1}
\draw (0, \y) node[left] {\(ω^{0}_{\y}\)} -- ++(1, 0);
\foreach \y in {1,...,\NmodesBetween}
\draw (0, \y) node[left] {\(ω^{0}_{\y}\)} -- ++(.5, 0) node(mc\y){}
-- ++(.5, 0) node(mr\y){};
\foreach \y in {-\Nmodes,\Nmodes} {
\foreach \sub/\name in {-\delta/-, \delta/+}
\draw (0, \sub+\y) -- ++(.5, 0) -- ++(.5, 0);
}
\foreach \y in {0} {
\foreach \sub/\name in {-\delta/-, \delta/+}
\draw (0, \sub+\y) node[left] {\(ω^{0}_{\name}\)} -- ++(.5, 0) node(pmc\name){} -- ++(.5, 0) node[right] (pmr\name){};
}
\foreach \y in {-\Nmodes,0,\Nmodes}
\draw[dashed,color=gray] (0, \y) -- ++(1, 0);
\draw[<->] (pmc+) -- node[right] {\(2δ\)} (pmc-);
\draw[<->] (pmc+) -- node[right] {\(Ω_{B} - δ\)} (mc1);
\draw[<->] (mc1) -- node[right] {\(Ω_{B}\)} (mc2);
\end{tikzpicture}
\caption{\label{fig:spectra}The spectra of the uncoupled loops (left) \(B,S\) and the resulting
spectrum after coupling the loops (right) for \(N=2\) and \(δ=Ω_{B}/5\).}
\end{figure}
\subsection{The Choice of the Hybridization Amplitude}
\label{sec:choice-hybridization}
It remains to be discussed which choice of \(δ\) is suitable. By
modulating \(V(t)\) and applying the RWA we can couple certain levels
in the spectrum of the system. To be able to couple one level to many
and implement the non-Markovian quantum walk, we have to select out
unique level-spacings. At the same time, we want to maximize the
frequency of the residual rotating terms.
A suitable mode for this one-to-many coupling is the \(c_{+}\) mode
with frequency \(ω_{+}^{0}=ω_{s}+δ\). We identify the \(A\) site of
the non-Markovian Quantum Walk in \(k\)-space with \(c_{+}\) and the
\(j\)th bath level with \(c_{j}\) (\(j\in [1, N]\)).
Let us denote the frequency
difference of the \(m\)th and \(n\)th mode by
\(Δ_{nm}=ω^{0}_{n}-ω^{0}_{m}\).
For \(n>m\) we have
\begin{align}
\label{eq:56}
Δ_{+,-}&=2δ\\
\label{eq:57}Δ_{n>0,-} &= n Ω_{B} + δ\\
\label{eq:58}Δ_{n>0,+} &= n Ω_{B} - δ\\
\label{eq:59}Δ_{n>0,m>0} &= (n-m) Ω_{B} - δ.
\end{align}
To couple exactly one other mode with \(n>0\) to the \(+\) mode, the
RWA requires that \(\abs{Δ_{n,+}}\neq \abs{Δ_{kl}}\) for \(k\neq n\), \(l\neq +\).
This requirement yields the following restrictions on the value of
\(δ\)
\begin{align}
\label{eq:61}
δ&\neq \frac{n}{2}Ω_{B} & \text{\cref{eq:58,eq:57}}\\
δ&\neq \frac{n}{3}Ω_{B} & \text{\cref{eq:58,eq:56}}\\
δ&\neq {n}Ω_{B} & \text{\cref{eq:58,eq:59}\footnote{Duh!}}.
\end{align}
To maximize the residual rotating terms, the minimum of the
\cref{eq:56,eq:57,eq:58,eq:59} has to be maximized for \(δ \in [0, Ω_{B}]\)
\begin{equation}
\label{eq:62}
Δ_{\max}\equiv \max_{δ}Δ_{\min}(δ) = \max_{δ}\min\Bqty{2δ, \abs{Ω_{B}}, \abs{Ω_{B}-3δ},
\abs{_{B}-3δ}, \abs{Ω_{B}-2δ}}.
\end{equation}
We find that \(Δ_{\max}=Ω_{B}/4\) for
\begin{equation}
\label{eq:63}
δ_{\mathrm{opt}}_{B}/5,
\end{equation}
as can be ascertained from \cref{fig:delta_choice}.
\begin{figure}[H]
\centering
\begin{tikzpicture}
\begin{axis}[
scale only axis=true,
width=.8\columnwidth,
height=.2\columnwidth,
xmin = 0, xmax = 1,
ymin = 0, ymax = .5,
axis lines* = left,
xtick = {0}, ytick = \empty,
clip = false,
xtick={},ytick={},
tick num = 10,
minor tick num=5,
grid=both,
grid style={line width=.1pt, draw=gray!10},
major grid style={line width=.2pt,draw=gray!50},
axis lines=middle,
ylabel = {\(Δ_{\min}/Ω_{B}\)},
xlabel = {\(δ/Ω_{B}\)},
x label style={at={(axis description cs:0.5,-0.2)},anchor=north},
y label style={at={(axis description cs:-0.06,.5)},rotate=90,anchor=south},
]
\addplot[domain = 0:1, restrict y to domain = 0:1, samples =
1000, color = cerulean]{min(2*x, 1-x, abs(1-3*x), abs(2-3*x),
abs(1-2*x))};
\addplot[color = black, mark = *, only marks, mark size = 3pt]
coordinates {(.2, .4)};
\addplot[color = black, dashed, thick] coordinates {(.2, 0) (.2,
.4) (0, .4)};
\addplot[color = gray, mark = *, only marks, mark size = 3pt]
coordinates {(.25, .25)};
\addplot[color = gray, dashed, thick] coordinates {(.25, 0) (.25,
.25) (0, .25)};
\end{axis}
\end{tikzpicture}
\caption{\label{fig:delta_choice} The minimal rotating frequencies
\cref{eq:62} for the range of possible \(δ\). The black marker
highlights \(δ=Ω_{B}/5\) and the grey marker marks \(δ=Ω_{B}/4\).}
\end{figure}
\subsection{Steady-state Transmission}
\label{sec:steadyst-transm}
TBD (already manually)
\newpage
\printbibliography{}