mirror of
https://github.com/vale981/notes_io_loop
synced 2025-03-05 09:31:41 -05:00
replace n_B -> n_T in applications
This commit is contained in:
parent
b5c8cab2ed
commit
f6bc7a6a0c
1 changed files with 10 additions and 8 deletions
|
@ -1010,7 +1010,7 @@ With this, we have for \(m=\pm,-N,-N+1,\ldots,-1,1,2,\ldots,N\)
|
|||
\label{eq:94}
|
||||
\begin{aligned}
|
||||
ω^{0}_{m\neq \pm} &= ω_{n}^{B} & ω^{0}_{\pm} &= \pm δ \cos(ψ)\\
|
||||
η^{0}_{m\neq\pm} &= η_{B} = η_S+2δΔ & η^{0}_{\pm} &= n_{S} + δΔ =
|
||||
η^{0}_{m\neq\pm} &= η_{B} = η_S+2δΔ & η^{0}_{\pm} &= η_{S} + δΔ =
|
||||
\frac{η_{S}+ η_{B}}{2}.
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
@ -1130,9 +1130,11 @@ Using \cref{sec:effects-asymm-damp}, we identify
|
|||
which yields using \cref{eq:88}
|
||||
\begin{equation}
|
||||
\label{eq:98}
|
||||
η_{m} = \frac{\abs{κ} πn_{B}}{2c\cos(ψ)} \pqty{δ_{m,+}
|
||||
\eu^{\iu ψ} + δ_{m,-}\eu^{-\iu ψ}}.
|
||||
η_{m} = \frac{\abs{κ} πn_{T}}{2c\cos(ψ)} \pqty{δ_{m,+}
|
||||
\eu^{\iu ψ} + δ_{m,-}\eu^{-\iu ψ}},
|
||||
\end{equation}
|
||||
where \(n_{T}\) is the refractive index of the transmission line
|
||||
(replace \(n_{B}\to n_{T}\) in \cref{sec:micr-deriv}).
|
||||
|
||||
To obtain the \(ω_{γ}\), \(λ_{γ}\) and \(O_{m,γ}\) we have to diagonalize
|
||||
\begin{equation}
|
||||
|
@ -1146,13 +1148,13 @@ enter the final interaction hamiltonian.
|
|||
As
|
||||
\begin{equation}
|
||||
\label{eq:100}
|
||||
\Im η_{\pm}= \pm \frac{\abs{κ} πn_{B}}{2c\cos(ψ)}Δ,
|
||||
\Im η_{\pm}= \pm \frac{\abs{κ} πn_{T}}{2c\cos(ψ)}Δ,
|
||||
\end{equation}
|
||||
we obtain a correction to the on-site energies \(ε_{\pm}=\pm ε_{A}\),
|
||||
whereas
|
||||
\begin{equation}
|
||||
\label{eq:101}
|
||||
\Re η_{\pm} = \frac{\abs{κ} πn_{B}}{2c}
|
||||
\Re η_{\pm} = \frac{\abs{κ} πn_{T}}{2c}
|
||||
\end{equation}
|
||||
is independent of \(Δ\) which is consistent with the symmetry of
|
||||
\(η^{0}_{\pm}\). Note however that \cref{eq:100} is of very small
|
||||
|
@ -1165,7 +1167,7 @@ In light of \cref{eq:113} we may choose\footnote{The right hand sides
|
|||
\begin{gather}
|
||||
\label{eq:114}
|
||||
ε_{+} = ε_{A}- \Im η_{+}= ε_{A} - \frac{\abs{κ}
|
||||
πn_{B}}{2c\cos(ψ)}Δ\\
|
||||
πn_{T}}{2c\cos(ψ)}Δ\\
|
||||
\begin{aligned}
|
||||
ε_{j} &= ω_{j}, & \varphi_{j} &= 0, & \hat{f}_{i}&= \frac{\sqrt{2}}{\hat{J}_{0,i}}η_{j}
|
||||
\end{aligned}
|
||||
|
@ -1194,7 +1196,7 @@ with
|
|||
\label{eq:117}
|
||||
\tilde{ω}_{\pm} \equiv ω_{σ}^{0}-ε_{σ} = ω_{S} \pm δ\cos(ψ) - ε_{A}
|
||||
+ \frac{\abs{κ}
|
||||
πn_{B}}{2c\cos(ψ)}Δ.
|
||||
πn_{T}}{2c\cos(ψ)}Δ.
|
||||
\end{equation}
|
||||
|
||||
Finally we arrive at
|
||||
|
@ -1305,7 +1307,7 @@ works out to be
|
|||
\begin{equation}
|
||||
\label{eq:71}
|
||||
\begin{aligned}
|
||||
η_{\pm} = \frac{\abs{κ} πn_{B}}{2c\cos(ψ)} \eu^{\mp \iu ψ}
|
||||
η_{\pm} = \frac{\abs{κ} πn_{T}}{2c\cos(ψ)} \eu^{\mp \iu ψ}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
where the sign in the exponent is \emph{inverted} compared to
|
||||
|
|
Loading…
Add table
Reference in a new issue