replace n_B -> n_T in applications

This commit is contained in:
Valentin Boettcher 2023-07-03 12:25:52 -04:00
parent b5c8cab2ed
commit f6bc7a6a0c

View file

@ -1010,7 +1010,7 @@ With this, we have for \(m=\pm,-N,-N+1,\ldots,-1,1,2,\ldots,N\)
\label{eq:94}
\begin{aligned}
ω^{0}_{m\neq \pm} &= ω_{n}^{B} & ω^{0}_{\pm} &= \pm δ \cos(ψ)\\
η^{0}_{m\neq\pm} &= η_{B} = η_S+2δΔ & η^{0}_{\pm} &= n_{S} + δΔ =
η^{0}_{m\neq\pm} &= η_{B} = η_S+2δΔ & η^{0}_{\pm} &= η_{S} + δΔ =
\frac{η_{S}+ η_{B}}{2}.
\end{aligned}
\end{equation}
@ -1130,9 +1130,11 @@ Using \cref{sec:effects-asymm-damp}, we identify
which yields using \cref{eq:88}
\begin{equation}
\label{eq:98}
η_{m} = \frac{\abs{κ} πn_{B}}{2c\cos(ψ)} \pqty{δ_{m,+}
\eu^{\iu ψ} + δ_{m,-}\eu^{-\iu ψ}}.
η_{m} = \frac{\abs{κ} πn_{T}}{2c\cos(ψ)} \pqty{δ_{m,+}
\eu^{\iu ψ} + δ_{m,-}\eu^{-\iu ψ}},
\end{equation}
where \(n_{T}\) is the refractive index of the transmission line
(replace \(n_{B}\to n_{T}\) in \cref{sec:micr-deriv}).
To obtain the \(ω_{γ}\), \(λ_{γ}\) and \(O_{m,γ}\) we have to diagonalize
\begin{equation}
@ -1146,13 +1148,13 @@ enter the final interaction hamiltonian.
As
\begin{equation}
\label{eq:100}
\Im η_{\pm}= \pm \frac{\abs{κ} πn_{B}}{2c\cos(ψ)}Δ,
\Im η_{\pm}= \pm \frac{\abs{κ} πn_{T}}{2c\cos(ψ)}Δ,
\end{equation}
we obtain a correction to the on-site energies \(ε_{\pm}=\pm ε_{A}\),
whereas
\begin{equation}
\label{eq:101}
\Re η_{\pm} = \frac{\abs{κ} πn_{B}}{2c}
\Re η_{\pm} = \frac{\abs{κ} πn_{T}}{2c}
\end{equation}
is independent of \(Δ\) which is consistent with the symmetry of
\(η^{0}_{\pm}\). Note however that \cref{eq:100} is of very small
@ -1165,7 +1167,7 @@ In light of \cref{eq:113} we may choose\footnote{The right hand sides
\begin{gather}
\label{eq:114}
ε_{+} = ε_{A}- \Im η_{+}= ε_{A} - \frac{\abs{κ}
πn_{B}}{2c\cos(ψ)}Δ\\
πn_{T}}{2c\cos(ψ)}Δ\\
\begin{aligned}
ε_{j} &= ω_{j}, & \varphi_{j} &= 0, & \hat{f}_{i}&= \frac{\sqrt{2}}{\hat{J}_{0,i}}η_{j}
\end{aligned}
@ -1194,7 +1196,7 @@ with
\label{eq:117}
\tilde{ω}_{\pm} \equiv ω_{σ}^{0}_{σ} = ω_{S} \pm δ\cos(ψ) - ε_{A}
+ \frac{\abs{κ}
πn_{B}}{2c\cos(ψ)}Δ.
πn_{T}}{2c\cos(ψ)}Δ.
\end{equation}
Finally we arrive at
@ -1305,7 +1307,7 @@ works out to be
\begin{equation}
\label{eq:71}
\begin{aligned}
η_{\pm} = \frac{\abs{κ} πn_{B}}{2c\cos(ψ)} \eu^{\mp \iu ψ}
η_{\pm} = \frac{\abs{κ} πn_{T}}{2c\cos(ψ)} \eu^{\mp \iu ψ}
\end{aligned}
\end{equation}
where the sign in the exponent is \emph{inverted} compared to