mirror of
https://github.com/vale981/notes_io_loop
synced 2025-03-04 17:11:40 -05:00
fix individual damping rates
This commit is contained in:
parent
f888305cb5
commit
d806dcb996
1 changed files with 28 additions and 18 deletions
|
@ -99,7 +99,7 @@ where
|
|||
\label{eq:35}
|
||||
O_{nγ}(t)\equiv O_{nγ}\eu^{\iu ε_{n}t}
|
||||
\end{equation}
|
||||
leaves us with a very simple Hamiltonian
|
||||
leaves us with a very simple Hamiltonian.
|
||||
|
||||
Let us list the relation between the \(a\), \(c\), \(h\) and \(d\) operators
|
||||
for later reference
|
||||
|
@ -398,7 +398,7 @@ Altogether we arrive at
|
|||
\label{eq:28}
|
||||
\dot{\tilde{c}}_{m} = -\iu\bqty{∑_{n}V^{0}_{mn} \tilde{c}_n +
|
||||
\frac{\eu^{\iu ω_{m}^{0}t}}{\sqrt{ω_{m}^{0}}}
|
||||
∑_{σ=\pm}g_{m,σ}^\ast b_{\inputf,+}^{m}(t)} - η_{m}\tilde{c}_{m}(t).
|
||||
∑_{σ=\pm}g_{m,σ}^\ast b_{\inputf,+}^{m}(t)} - η_{m}\tilde{c}_{m}.
|
||||
\end{equation}
|
||||
The usual situation is that \(b^{m}_{\inputf, -} = 0\) and we can
|
||||
restrict ourselves to the coupling to the right-moving input field.
|
||||
|
@ -456,47 +456,57 @@ much smaller than a typical timescale we're interested in.
|
|||
|
||||
|
||||
To integrate \cref{eq:28}, we
|
||||
first diagonalize \(V^{0}_{mn}\)
|
||||
first diagonalize \(V^{0}_{mn} + δ_{mn}\pqty{ε_{m}-i η_{m}}\)
|
||||
\begin{equation}
|
||||
\label{eq:65}
|
||||
V^{0}_{mn} + δ_{mn}\pqty{ε_{m}-i η_{m}} \to ∑_{γγ'}
|
||||
δ_{γγ'}(ω_{γ}-\iu \tilde{n}_{γ})
|
||||
\end{equation}
|
||||
to obtain \(O_{mγ}(t)\) and find
|
||||
\begin{equation}
|
||||
\label{eq:32}
|
||||
\dot{d}_{γ} = ∑_{m}O^{\ast}_{mγ}\dot{\tilde{c}}_{m} = -\iu\bqty{{ω_{γ}}d_{γ} +
|
||||
\dot{d}_{γ} = ∑_{m}O^{\ast}_{mγ}\dot{\tilde{c}}_{m} =
|
||||
-\iu\bqty{\pqty{ω_{γ} - \iu \tilde{η}_{γ}}d_{γ} +
|
||||
∑_{σ=\pm}∑_{m}O^{\ast}_{mγ}(t)\frac{g_{m,σ}^\ast }{\sqrt{ω_{m}^{0}}} \eu^{\iu ω_{m}^{0}t}
|
||||
b_{\inputf,σ}^{m}(t)} - π∑_{m}O^{\ast}_{mγ}(t)η_{m}\tilde{c}_{m}(t).
|
||||
b_{\inputf,σ}^{m}(t)}.
|
||||
\end{equation}
|
||||
|
||||
We now introduce some additional simplifications. As the coupling to
|
||||
the transmission line is likely not the only source of loss it is
|
||||
justified to replace \(η_{m}\) with a constant \(η\) as the simplest
|
||||
choice. Further, we equate all input fields \(b_{\inputf}^{m}\). This
|
||||
is allowed, as we will transition to the classical picture later,
|
||||
where the commutation relations do not matter. We also assume that
|
||||
we're working in a region in \(m\) space, where the
|
||||
\(g_{β}^{0}\approx \sqrt{κ}\) and
|
||||
We now introduce some additional simplifications beginning with
|
||||
equating all input fields \(b_{\inputf}^{m}\). This is allowed, as we
|
||||
will transition to the classical picture later, where the commutation
|
||||
relations do not matter. We also assume that we're working in a region
|
||||
in \(m\) space, where the \(g_{β}^{0}\approx \sqrt{κ}\) and
|
||||
\(\sqrt{ω^{0}_{m}}\approx\sqrt{ω_{0}}\), where \(ω_{0}\) is a typical
|
||||
frequency in the input field, can be assumed to be approximately
|
||||
constant. With these considerations in mind we can simplify
|
||||
\cref{eq:32} to
|
||||
\begin{equation}
|
||||
\label{eq:64}
|
||||
η_{m}=κ\frac{πn_{B}}{c}∑_{σ=\pm,β,β'}U_{βm}U^\ast_{β'm}δ_{\sgn(β),σ} δ_{\sgn(β'),σ}
|
||||
\end{equation}
|
||||
and
|
||||
\begin{gather}
|
||||
\label{eq:34}
|
||||
\dot{d}_{γ} = ∑_{m}O^{\ast}_{mγ}\dot{\tilde{c}}_{m} =
|
||||
-\iu\bqty{{ω_{γ}}d_{γ} + \sqrt{κ} ∑_{σ=\pm}
|
||||
U^{\pm}_{γ}(t) \frac{b_{\inputf}(t)}{\sqrt{ω_{0}}}} - η d_{γ}\\
|
||||
U^{σ}_{γ}(t) = ∑_{m,β} δ_{\sgn({β}),σ}U^\ast_{βm}O^\ast_{mγ}(t) \eu^{\iu ω_{m}^{0}t}= ∑_{m,β} δ_{\sgn({β}),σ}U^\ast_{βm}O^\ast_{mγ} \eu^{\iu (ω_{m}^{0}-ε_{m})t}
|
||||
-\iu\bqty{\pqty{ω_{γ}-\iu \tilde{η}_{γ}}d_{γ} + \sqrt{κ} ∑_{σ=\pm}
|
||||
U^{\pm}_{γ}(t) \frac{b_{\inputf}(t)}{\sqrt{ω_{0}}}}\\
|
||||
U^{σ}_{γ}(t) = ∑_{m,β} δ_{\sgn({β}),σ}U^\ast_{βm}O^\ast_{mγ}(t) \eu^{\iu ω_{m}^{0}t}= ∑_{m,β} δ_{\sgn({β}),σ}U^\ast_{βm}O^\ast_{mγ} \eu^{\iu (ω_{m}^{0}-ε_{m})t}.
|
||||
\end{gather}
|
||||
|
||||
These simplifications still capture the essence of the physics, as
|
||||
demonstrated in the current long-range SSH experiment.
|
||||
|
||||
We can now proceed to integrate \cref{eq:34} to obtain
|
||||
\begin{equation}
|
||||
\label{eq:36}
|
||||
d_{γ}(t)= d_{γ}(0) \eu^{-\pqty{\iu ω_{γ} + η}t} -
|
||||
d_{γ}(t)= d_{γ}(0) \eu^{-\pqty{\iu ω_{γ} + \tilde{η}_{γ}}t} -
|
||||
\frac{i}{\sqrt{κ}} Σ_{σ=\pm} ∫_{0}^{t}χ_{γ}(t-s) U^{σ}_{γ}(s)
|
||||
\frac{b_{\inputf,σ}(t)}{\sqrt{ω_{0}}}\dd{s}
|
||||
\end{equation}
|
||||
with
|
||||
\begin{equation}
|
||||
\label{eq:37}
|
||||
χ_{γ}(t) = κ \eu^{-\pqty{\iu ω_{γ} + η}t}.
|
||||
χ_{γ}(t) = κ \eu^{-\pqty{\iu ω_{γ} + \tilde{η}_{γ}}t}.
|
||||
\end{equation}
|
||||
|
||||
When constructing the total output field, we have to remember how the
|
||||
|
|
Loading…
Add table
Reference in a new issue