mirror of
https://github.com/vale981/notes_io_loop
synced 2025-03-05 17:41:42 -05:00
write up changes when concidering apriori damping
This commit is contained in:
parent
24d26cbd4a
commit
92154d89c8
1 changed files with 141 additions and 1 deletions
|
@ -576,13 +576,153 @@ In the above we have assumed that \(H_{0}\) is hermitian. This,
|
||||||
however, ceases to be the case when we assume some a-priori
|
however, ceases to be the case when we assume some a-priori
|
||||||
phenomenological decay in the bare components of the system and we
|
phenomenological decay in the bare components of the system and we
|
||||||
cannot write \(H_{0}=H^{H}_{0} - \iu η \id\) with \(H^{H}_{0}\)
|
cannot write \(H_{0}=H^{H}_{0} - \iu η \id\) with \(H^{H}_{0}\)
|
||||||
hermitian.
|
hermitian. To retain consistency, the decay rates have to be
|
||||||
|
introduced on the level of the equations of motion of the mode
|
||||||
|
operators \(a_{i,α}\) after deriving them from the hermitian
|
||||||
|
Hamiltonian. The equations of motion can then still be decoupled by
|
||||||
|
diagonalizing the non-hermitian that includes the phenomenological
|
||||||
|
decay.
|
||||||
|
|
||||||
|
We find\footnote{Assuming that the non-hermiticity is small enough for
|
||||||
|
the matrix to remain diagonalizable.}
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:53}
|
||||||
|
∑_{iα;jβ}\pqty{T^{-1}}_{m;i,α} \pqty{H_{0}}_{i,α;j,β}T_{j,β;n} =
|
||||||
|
\pqty{ω_{m}^{0}-\iu η_{m}^{0}}δ_{nm},
|
||||||
|
\end{equation}
|
||||||
|
where \(T\) is the matrix whose rows are the eigenvectors of
|
||||||
|
\(H_{0}\). Note that \(T\) is not unitary anymore. For notational
|
||||||
|
convenience we will write \(T^{-1}_{m;i,α}\) instead of
|
||||||
|
\(\pqty{T^{-1}}_{m;i,α}\) and use explicit fractions if we want to
|
||||||
|
express the multiplicative inverse. The mode operators transform as
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:60}
|
||||||
|
c_{m} = ∑_{i,α} T^{-1}_{m;i,α}a_{i,α},
|
||||||
|
\end{equation}
|
||||||
|
which are \emph{not} to be identified with bosons anymore, as the
|
||||||
|
non-unitarity of \(T\) breaks the bosonic commutation
|
||||||
|
relations. Again, we express the modes that are in contact with the
|
||||||
|
transmission line as \(a_{α}=a_{i_{0},α}\) and find
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:69}
|
||||||
|
α_{α} = ∑_{α} T_{i_{0},α;m}c_{m} \equiv ∑_{α}U_{αm} c_{m}.
|
||||||
|
\end{equation}
|
||||||
|
For convenience we define
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:70}
|
||||||
|
U^{-1}_{mα}\equiv T^{-1}_{m;iα}.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
The modulation term \(V\) transforms as
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:74}
|
||||||
|
V_{mn}=∑_{iα;jβ}\pqty{T^{-1}}_{m;i,α} V_{i,α;j,β}T_{j,β;n},
|
||||||
|
\end{equation}
|
||||||
|
and is no longer hermitian.
|
||||||
|
|
||||||
|
We start by writing down the equations of motion for the original
|
||||||
|
modes, assuming \(H_{0}\) to be hermitian, introduce the non-hermitian
|
||||||
|
terms and express everything in terms of the \(c_{m}\) using
|
||||||
|
\(T\). Subsequently, we change into a rotating frame
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:66}
|
||||||
|
\tilde{c}_{m} = c_{m}\eu^{\iu ω^{0}_{m}t},
|
||||||
|
\end{equation}
|
||||||
|
rotating away only the unitary evolution. Applying the rotating wave
|
||||||
|
and first Markov approximations works out precisely as in
|
||||||
|
\cref{sec:rotating-wave-first}.
|
||||||
|
|
||||||
|
|
||||||
|
To account for non-unitarity we have to make the following
|
||||||
|
replacements along the way
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:68}
|
||||||
|
\tilde{G}_{m}(k) &\rightarrow \tilde{G}_{m}(k)= \frac{gΔx}{\sqrt{L_{A}}} ∑_{β} U_{βm}
|
||||||
|
G_{β}(k) δ_{\sgn(β),\sgn(k)}\\
|
||||||
|
\tilde{G}^\ast_{m}(k) &\rightarrow\tilde{G}^{-1}_{m}(k) = \frac{g^\astΔx}{\sqrt{L_{A}}} ∑_{β} U^{-1}_{mβ}
|
||||||
|
G^\ast_{β}(k) δ_{\sgn(β),\sgn(k)}\\
|
||||||
|
g_{m,σ}&\rightarrow g_{m,σ}=∑_{β}g^{0}_{β} U_{βm}δ_{\sgn(β),σ}\\
|
||||||
|
g^\ast_{m,σ}&\rightarrow g^{-1}_{m,σ}=∑_{β}\pqty{g^{0}_{β}}^\ast U^{-1}_{mβ}δ_{\sgn(β),σ}\\
|
||||||
|
\end{align}
|
||||||
|
which gives us
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:72}
|
||||||
|
η_{m}=\frac{π n_{B}}{c} ∑_{σ} g_{mσ}g^{-1}_{mσ},
|
||||||
|
\end{align}
|
||||||
|
which might have an imaginary part.
|
||||||
|
|
||||||
|
This leaves us with
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:73}
|
||||||
|
\dot{\tilde{c}}_{m}= -\iu\bqty{∑_{n}V^{0}_{mn}\eu^{\iu
|
||||||
|
\pqty{ε_{m}-ε_{n}}t} + \frac{\eu^{\iu ω^{0}_{m}t}}{\sqrt{ω^{0}_{m}}}∑_{σ=\pm}g_{mσ}^{-1}b_{\inputf,σ}^{m}} - \pqty{η_{m} +
|
||||||
|
η_{m}^{0}}\tilde{c}_{m}.
|
||||||
|
\end{equation}
|
||||||
|
To remove the residual explicit time dependence in \cref{eq:73} we
|
||||||
|
define
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:75}
|
||||||
|
h_{m}=\tilde{c}_{m}\eu^{-\iu ε_{m}t}
|
||||||
|
\end{equation}
|
||||||
|
and find
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:76}
|
||||||
|
\dot{h}_{m}= -\iu\bqty{∑_{n}\Bqty{V^{0}_{mn}+ \bqty{ε_{m}-\iu
|
||||||
|
\pqty{η_{m}^{0}+η_{m}}}δ_{nm}}h_{m}} + \frac{\eu^{\iu \pqty{ω^{0}_{m}-ε_{m}}t}}{\sqrt{ω^{0}_{m}}}∑_{σ=\pm}g_{mσ}^{-1}b_{\inputf,σ}^{m}.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Diagonalizing
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:77}
|
||||||
|
∑_{mn}O^{-1}_{γ'm}\bqty{∑_{n}\Bqty{V^{0}_{mn}+ \bqty{ε_{m}-\iu
|
||||||
|
\pqty{η_{m}^{0}+η_{m}}}δ_{nm}}h_{m}}O_{nγ} = \pqty{ω_{γ}-\iu λ_{γ}}δ_{γ,γ'}
|
||||||
|
\end{equation}
|
||||||
|
and defining
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:78}
|
||||||
|
d_{γ} = ∑_{n}O^{-1}_{γn}h_{n} = ∑_{n}O^{-1}_{γn}\eu^{-\iu
|
||||||
|
ε_{n}t}\tilde{c}_{n}\implies h_{n}=∑_{γ}\eu^{\iu ε_{n}t}O_{nγ}d_{γ}
|
||||||
|
\end{equation}
|
||||||
|
will give us the equivalent of \cref{eq:32}
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:80}
|
||||||
|
\dot{d}_{γ}=-\iu\pqty{ω_{γ}+\sqrt{κ^\ast}∑_{σ=\pm}U^{σ}_{γ}\frac{b_{\inputf,σ}}{\sqrt{ω_{0}}}}d_{γ}
|
||||||
|
- λ_{γ}d_{γ}
|
||||||
|
\end{equation}
|
||||||
|
where we have set \(g_{β}^{0}=\sqrt{κ}\) and defined
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:82}
|
||||||
|
U^{σ}_{γ} =
|
||||||
|
∑_{mβ}\eu^{\iu\pqty{ω^{0}_{m}-ε_{m}}t}O^{-1}_{γm}U^{-1}_{mβ}δ_{\sgn(β),σ}.
|
||||||
|
\end{equation}
|
||||||
|
This also simplifies \cref{eq:64} to
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:88}
|
||||||
|
η_{m}=\abs{κ}\frac{πn_{B}}{c}∑_{σ=\pm,β,β'}U_{βm}U^{-1}_{βm'}δ_{\sgn(β),σ} δ_{\sgn(β'),σ}.
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
Further defining
|
||||||
|
\begin{align}
|
||||||
|
\label{eq:83}
|
||||||
|
\bar{U}^{σ}_{γ}&=∑_{mβ}\eu^{-\iu\pqty{ω^{0}_{m}-ε_{m}}t}O_{mγ}U_{βm}δ_{\sgn(β),σ}\qq{and}&
|
||||||
|
χ_{γ}&=\abs{κ}\eu^{-\pqty{\iu ω_{γ}+λ_{γ}}t},
|
||||||
|
\end{align}
|
||||||
|
we obtain
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:86}
|
||||||
|
\ev{{b_{\outputf}(x,t)}} =
|
||||||
|
\ev{b_{\inputf}(x,t)} - ∑_{σ=\pm}∫_{0}^{τ(x,t)}χ_{\sgn(x),σ}(τ(x,t),s) \ev{b_{\inputf,σ}(s)} \dd{s}
|
||||||
|
\end{equation}
|
||||||
|
with the time non-local susceptibility for the left and right moving
|
||||||
|
input fields
|
||||||
|
\begin{equation}
|
||||||
|
\label{eq:87}
|
||||||
|
χ_{δ,σ}(t,s) = \frac{π n_{B}}{c}Θ(t) ∑_{γ}\bar{U}^{δ}_{γ}(t)χ_{γ}(t-s)U^{σ}_{γ}(s).
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
These equations are essentially the same as \cref{eq:39,eq:40},
|
||||||
|
accounting for the non-unitary transformations and the apriori decay
|
||||||
|
rates when diagonalizing the equations of motion for the \(\tilde{c}_{m}\).
|
||||||
|
|
||||||
\section{Application to the Non-Markovian Quantum Walk}
|
\section{Application to the Non-Markovian Quantum Walk}
|
||||||
\label{sec:appl-non-mark}
|
\label{sec:appl-non-mark}
|
||||||
|
|
Loading…
Add table
Reference in a new issue