write up changes when concidering apriori damping

This commit is contained in:
Valentin Boettcher 2023-06-20 13:52:51 -04:00
parent 24d26cbd4a
commit 92154d89c8

View file

@ -576,13 +576,153 @@ In the above we have assumed that \(H_{0}\) is hermitian. This,
however, ceases to be the case when we assume some a-priori
phenomenological decay in the bare components of the system and we
cannot write \(H_{0}=H^{H}_{0} - \iu η \id\) with \(H^{H}_{0}\)
hermitian.
hermitian. To retain consistency, the decay rates have to be
introduced on the level of the equations of motion of the mode
operators \(a_{i,α}\) after deriving them from the hermitian
Hamiltonian. The equations of motion can then still be decoupled by
diagonalizing the non-hermitian that includes the phenomenological
decay.
We find\footnote{Assuming that the non-hermiticity is small enough for
the matrix to remain diagonalizable.}
\begin{equation}
\label{eq:53}
_{iα;jβ}\pqty{T^{-1}}_{m;i,α} \pqty{H_{0}}_{i,α;j,β}T_{j,β;n} =
\pqty{ω_{m}^{0}-\iu η_{m}^{0}}δ_{nm},
\end{equation}
where \(T\) is the matrix whose rows are the eigenvectors of
\(H_{0}\). Note that \(T\) is not unitary anymore. For notational
convenience we will write \(T^{-1}_{m;i,α}\) instead of
\(\pqty{T^{-1}}_{m;i,α}\) and use explicit fractions if we want to
express the multiplicative inverse. The mode operators transform as
\begin{equation}
\label{eq:60}
c_{m} = ∑_{i,α} T^{-1}_{m;i,α}a_{i,α},
\end{equation}
which are \emph{not} to be identified with bosons anymore, as the
non-unitarity of \(T\) breaks the bosonic commutation
relations. Again, we express the modes that are in contact with the
transmission line as \(a_{α}=a_{i_{0},α}\) and find
\begin{equation}
\label{eq:69}
α_{α} = ∑_{α} T_{i_{0},α;m}c_{m} \equiv_{α}U_{αm} c_{m}.
\end{equation}
For convenience we define
\begin{equation}
\label{eq:70}
U^{-1}_{mα}\equiv T^{-1}_{m;iα}.
\end{equation}
The modulation term \(V\) transforms as
\begin{equation}
\label{eq:74}
V_{mn}=∑_{iα;jβ}\pqty{T^{-1}}_{m;i,α} V_{i,α;j,β}T_{j,β;n},
\end{equation}
and is no longer hermitian.
We start by writing down the equations of motion for the original
modes, assuming \(H_{0}\) to be hermitian, introduce the non-hermitian
terms and express everything in terms of the \(c_{m}\) using
\(T\). Subsequently, we change into a rotating frame
\begin{equation}
\label{eq:66}
\tilde{c}_{m} = c_{m}\eu^{\iu ω^{0}_{m}t},
\end{equation}
rotating away only the unitary evolution. Applying the rotating wave
and first Markov approximations works out precisely as in
\cref{sec:rotating-wave-first}.
To account for non-unitarity we have to make the following
replacements along the way
\begin{align}
\label{eq:68}
\tilde{G}_{m}(k) &\rightarrow \tilde{G}_{m}(k)= \frac{gΔx}{\sqrt{L_{A}}}_{β} U_{βm}
G_{β}(k) δ_{\sgn(β),\sgn(k)}\\
\tilde{G}^\ast_{m}(k) &\rightarrow\tilde{G}^{-1}_{m}(k) = \frac{g^\astΔx}{\sqrt{L_{A}}}_{β} U^{-1}_{}
G^\ast_{β}(k) δ_{\sgn(β),\sgn(k)}\\
g_{m,σ}&\rightarrow g_{m,σ}=∑_{β}g^{0}_{β} U_{βm}δ_{\sgn(β),σ}\\
g^\ast_{m,σ}&\rightarrow g^{-1}_{m,σ}=∑_{β}\pqty{g^{0}_{β}}^\ast U^{-1}_{}δ_{\sgn(β),σ}\\
\end{align}
which gives us
\begin{align}
\label{eq:72}
η_{m}=\frac{π n_{B}}{c}_{σ} g_{mσ}g^{-1}_{mσ},
\end{align}
which might have an imaginary part.
This leaves us with
\begin{equation}
\label{eq:73}
\dot{\tilde{c}}_{m}= -\iu\bqty{_{n}V^{0}_{mn}\eu^{\iu
\pqty{ε_{m}_{n}}t} + \frac{\eu^{\iu ω^{0}_{m}t}}{\sqrt{ω^{0}_{m}}}_{σ=\pm}g_{mσ}^{-1}b_{\inputf,σ}^{m}} - \pqty{η_{m} +
η_{m}^{0}}\tilde{c}_{m}.
\end{equation}
To remove the residual explicit time dependence in \cref{eq:73} we
define
\begin{equation}
\label{eq:75}
h_{m}=\tilde{c}_{m}\eu^{-\iu ε_{m}t}
\end{equation}
and find
\begin{equation}
\label{eq:76}
\dot{h}_{m}= -\iu\bqty{_{n}\Bqty{V^{0}_{mn}+ \bqty{ε_{m}-\iu
\pqty{η_{m}^{0}_{m}}}δ_{nm}}h_{m}} + \frac{\eu^{\iu \pqty{ω^{0}_{m}_{m}}t}}{\sqrt{ω^{0}_{m}}}_{σ=\pm}g_{mσ}^{-1}b_{\inputf,σ}^{m}.
\end{equation}
Diagonalizing
\begin{equation}
\label{eq:77}
_{mn}O^{-1}_{γ'm}\bqty{_{n}\Bqty{V^{0}_{mn}+ \bqty{ε_{m}-\iu
\pqty{η_{m}^{0}_{m}}}δ_{nm}}h_{m}}O_{nγ} = \pqty{ω_{γ}-\iu λ_{γ}}δ_{γ,γ'}
\end{equation}
and defining
\begin{equation}
\label{eq:78}
d_{γ} = ∑_{n}O^{-1}_{γn}h_{n} = ∑_{n}O^{-1}_{γn}\eu^{-\iu
ε_{n}t}\tilde{c}_{n}\implies h_{n}=∑_{γ}\eu^{\iu ε_{n}t}O_{nγ}d_{γ}
\end{equation}
will give us the equivalent of \cref{eq:32}
\begin{equation}
\label{eq:80}
\dot{d}_{γ}=-\iu\pqty{ω_{γ}+\sqrt{κ^\ast}_{σ=\pm}U^{σ}_{γ}\frac{b_{\inputf,σ}}{\sqrt{ω_{0}}}}d_{γ}
- λ_{γ}d_{γ}
\end{equation}
where we have set \(g_{β}^{0}=\sqrt{κ}\) and defined
\begin{equation}
\label{eq:82}
U^{σ}_{γ} =
_{}\eu^{\iu\pqty{ω^{0}_{m}_{m}}t}O^{-1}_{γm}U^{-1}_{}δ_{\sgn(β),σ}.
\end{equation}
This also simplifies \cref{eq:64} to
\begin{equation}
\label{eq:88}
η_{m}=\abs{κ}\frac{πn_{B}}{c}_{σ=\pm,β,β'}U_{βm}U^{-1}_{βm'}δ_{\sgn(β),σ} δ_{\sgn(β'),σ}.
\end{equation}
Further defining
\begin{align}
\label{eq:83}
\bar{U}^{σ}_{γ}&=∑_{}\eu^{-\iu\pqty{ω^{0}_{m}_{m}}t}O_{mγ}U_{βm}δ_{\sgn(β),σ}\qq{and}&
χ_{γ}&=\abs{κ}\eu^{-\pqty{\iu ω_{γ}_{γ}}t},
\end{align}
we obtain
\begin{equation}
\label{eq:86}
\ev{{b_{\outputf}(x,t)}} =
\ev{b_{\inputf}(x,t)} - ∑_{σ=\pm}_{0}^{τ(x,t)}χ_{\sgn(x),σ}(τ(x,t),s) \ev{b_{\inputf,σ}(s)} \dd{s}
\end{equation}
with the time non-local susceptibility for the left and right moving
input fields
\begin{equation}
\label{eq:87}
χ_{δ,σ}(t,s) = \frac{π n_{B}}{c}Θ(t) ∑_{γ}\bar{U}^{δ}_{γ}(t)χ_{γ}(t-s)U^{σ}_{γ}(s).
\end{equation}
These equations are essentially the same as \cref{eq:39,eq:40},
accounting for the non-unitary transformations and the apriori decay
rates when diagonalizing the equations of motion for the \(\tilde{c}_{m}\).
\section{Application to the Non-Markovian Quantum Walk}
\label{sec:appl-non-mark}