rework derivation of i/o to remove \tilde{c}_m + explicit sqrt{w^B_k}

This commit is contained in:
Valentin Boettcher 2023-07-11 10:47:17 -04:00
parent 04b9fde5dd
commit 6a6e345b03

View file

@ -84,40 +84,53 @@ that obeys the unitarity relation \(U U^† = \id\). Transitioning into
a rotating frame with respect to \(H_{0}\) and employing the rotating a rotating frame with respect to \(H_{0}\) and employing the rotating
wave approximation removes all but the slowest-oscillating rotating wave approximation removes all but the slowest-oscillating rotating
terms from the interaction terms from the interaction
\begin{equation} \begin{multline}
\label{eq:12} \label{eq:12}
\tilde{c}(t)_{m} = c_{m}(t)\eu^{\iu ω^{0}_{m}t} \implies H_{A} \to \tilde{H}_{A}= h_{m}(t) = c_{m}(t)\eu^{\iu \pqty{ω^{0}_{m}_{m}}t} \equiv c_{m}(t)\eu^{\iu \tilde{ω}^{0}_{m}t}
_{mn}V_{mn}(t) \eu^{-\iu t (ω^{0}_{n}^{0}_{m})} \\\implies H_{A} \to \tilde{H}_{A}=
\tilde{c}_{m}^\tilde{c}_{n} \approx_{mn}V^{0}_{mn} \eu^{\iu_{m}_{n})t}\tilde{c}_{m}^\tilde{c}_{n}, _{mn}\pqty{V_{mn}(t) + ε_{m}δ_{mn}} \eu^{\iu t (ω^{0}_{n}^{0}_{m})}\eu^{-\iu
\end{equation} _{n}_{m})t}
where \(\abs{ε_{m}-ε_{n}}\ll\abs{ω^{0}_{m} - ω^{0}_{n}}\). {c}_{m}^{c}_{n} \approx_{mn}\pqty{V^{0}_{mn}+ ε_{m}δ_{mn}} {h}_{m}^{h}_{n},
Upon changing into another rotating frame we can remove this residual \end{multline}
time dependence where
\(\abs{ε_{m}}\ll\abs{ω^{0}_{m}}\)\(\abs{ε_{m}-ε_{n}}\ll\abs{ω^{0}_{m}
- ω^{0}_{n}}\) are the detunings of the drive with respect to the
energy levels of \(H_{0}\). \emph{This constitutes our target
Hamiltonian which we can control through the modulation of
\(V(t)\).}
Due to the coupling to the transmission line we will find that the
equation of motion for the \(h_{m}\) becomes non-unitary with a
damping term
\begin{equation} \begin{equation}
\label{eq:33} \label{eq:33}
h_{n}(t) = \tilde{c}_{n}\eu^{-\iu ε_{n}t} \implies \tilde{H}'_{A} = \iu \dot{h}_{m} = ∑_{n}\bqty{V^{0}_{mn} + δ_{mn}{ε_{m}-\iu η_{m}}}h_{n}.
_{mn}\bqty{V^{0}_{mn} + δ_{mn}{ε_{m}-\iu η_{m}}} h_{m}^†h_{n},
\end{equation} \end{equation}
where we've added an ad-hock decay rate due to the coupling to the
transmission line that will be introduced more rigorously later on.
We can subsequently find a unitary transformation that diagonalizes We can subsequently find a (non-unitary) transformation that diagonalizes
the RWA interaction the RWA interaction
\begin{equation} \begin{equation}
\label{eq:30} \label{eq:30}
_{mn}\pqty{O^{-1}}_{γm}\bqty{V^{0}_{mn} + δ_{mn}\pqty{ε_{m}-\iu η_{m}}}O_{nγ'} = ω_{γ} δ_{γ,γ'}. _{mn}\pqty{O^{-1}}_{γm}\bqty{V^{0}_{mn} + δ_{mn}\pqty{ε_{m}-\iu
η_{m}}}O_{nγ'} = \pqty{ω_{γ}-\iu λ_{γ}} δ_{γ,γ'}.
\end{equation} \end{equation}
For \(η_{m}=0\) the columns of \(O\) are the normalized eigenvectors For \(η_{m}=0\) the columns of \(O\) are the normalized eigenvectors
of \(V_{mn}^{0}=\mel{m}{V^{0}}{n}\). So if \(\ket{ψ_{j}}\) is an of \(V_{mn}^{0}=\mel{m}{V^{0}}{n}\). So if \(\ket{ψ_{j}}\) is an
eigenvector of \(V\), then \(\braket{i}{ψ_{j}} = O_{ij}\) eigenvector of \(V\), then \(\braket{i}{ψ_{j}} = O_{ij}\)
\footnote{This is just a reminder for Valentin who can't seem to keep \footnote{This is just a reminder for Valentin who can't seem to keep
this in his head.}. this in his head.}. For finite \(η_{m}\) we will find that the
eigenvalues will feature an imaginary part and \(O_{mγ}\) is no longer
unitary, except for the case where all \(η_{m}\) are the same. This
situation occurs if there are other dominating sources of loss such
that the coupling to the transmission line is not a factor or if we
couple to a sufficiently narrow range of modes so that the variation
of damping rates becomes negligible.
Transforming the \(h_{m}\) according to Transforming the \(h_{m}\) according to
\begin{equation} \begin{equation}
\label{eq:13} \label{eq:13}
d_{γ} = ∑_{n}O^{-1}_{γn}(0) h_{n} = ∑_{n}O^{-1}_{γn}(t) \eu^{-\iu d_{γ} = ∑_{n}O^{-1}_{γn} h_{n} = ∑_{n}O^{-1}_{γn} \eu^{\iu
ε_{n}t}\tilde{c}_{n} \implies \iu \dot{d}_{γ} = ω_{γ}d_{γ} \tilde{ω}^{0}_{n} t}{c}_{n} \implies \iu \dot{d}_{γ} = ω_{γ}d_{γ}
\end{equation} \end{equation}
leaves us with a very simple equation of motion. leaves us with a very simple equation of motion.
@ -126,27 +139,33 @@ In summary, the bare modes of the resonators are denoted by
\(a_{j,α}\) where \(j\) refers to the resonator and \(α\) labels the \(a_{j,α}\) where \(j\) refers to the resonator and \(α\) labels the
mode within that resonator. The eigenmodes \(c_{m}\) of the coupled mode within that resonator. The eigenmodes \(c_{m}\) of the coupled
oscillators obeying \(H_{0}\) are related to the bare modes oscillators obeying \(H_{0}\) are related to the bare modes
\(α_{j,α}\) by \cref{eq:43}. The eigenmodes in the rotating frame of \(α_{j,α}\) by \cref{eq:43}. The frame in which the equations of
\(H_{0}\) are called \(\tilde{c}_{m}\). The frame in which the motion for the modes reflects the target Hamiltonian
equations of motion for the modes reflects the target Hamiltonian \(\tilde{H}_{A}'\) are reached through a transformation into a
\(\tilde{H}_{A}'\) is given by rotating away the slow-oscillating rotating frame in \cref{eq:12} leading to the \(h_{n}\) modes. The
terms in \cref{eq:12} leading to the \(h_{n}\) modes. The resulting resulting equations of motion for the \(h_{n}\) can be decoupled by
equations of motion for the \(h_{n}\) can be decoupled by the the transformation \(O_{mγ}\) giving the eigenmodes of the target
transformation \(O_{mγ}\) giving the eigenmodes of the target Hamiltonian \(d_{γ}\) including damping.
Hamiltionaion \(d_{γ}\) including damping.
It is important to keep in mind that the actual observables are the
\(α_{β} = α_{i_{0}}\) which couple to the transmission line.
Let us list the relation between the \(a\), \(c\), \(h\) and \(d\) operators Let us list the relation between the \(a\), \(c\), \(h\) and \(d\) operators
for later reference for later reference
\begin{align} \begin{equation}
\label{eq:15} \label{eq:67}
c_{n} &= \eu^{-\iu \begin{array}{@{}l| c c c c@{}}
ω^{0}_{n} t}\tilde{{c}}_{n} = \eu^{-\iu & α_{β} & c_{m} & h_{n} & d_{γ}\\
^{0}_{n}_{n}) t} h_{n}= \eu^{-\iu \midrule
^{0}_{n}_{n}) t}_{γ} O_{nγ}d_{γ} \\ a_{β} & 1 & U_{βm}\equiv T_{i_{0},β;m} & U_{βm}\eu^{-\iu \tilde{ω}^0_mt} &_{m}U_{βm}O_{mγ}\eu^{-\iu \tilde{ω}^0_mt} \\
a_{β} &= ∑_{m} U_{β,m} c_{m} = ∑_{m} U_{β,m} \tilde{c}_{m}\eu^{-\iu c_{m} & U^{-1}_{} = U^\ast_{βm} & 1 & δ_{mn}\eu^{-\iu \tilde{ω}^0_mt} & O_{mγ}\eu^{-\iu \tilde{ω}^0_nt} \\
ω^{0}_{m} t} = ∑_{mγ} U_{β,m}O_{mγ} \eu^{-\iu h_{n} & U^\ast_{βn}\eu^{\iu \tilde{ω}^0_nt} & δ_{nm}\eu^{\iu \tilde{ω}^0_mt} & 1 & O_{nγ} \\
^{0}_{m}_{m}) t} d_{γ} d_{γ} &_{m} U^\ast_{βm} O^{-1}_{γm} \eu^{\iu \tilde{ω}^0_mt} & O^{-1}_{γn} \eu^{\iu \tilde{ω}^0_mt} & O^{-1}_{γm} & 1. \\
\end{align} \end{array}
\end{equation}
The quantity \(x_{i}\) in each row is obtained from the quantity
\(y_{j}\) heading each row through the transformation \(A_{ij}(t)\) in
each cell by \(x_{i} =_{j}A_{ij}(t)y_{j}\).
\subsection{Coupling to the Transmission Line} \subsection{Coupling to the Transmission Line}
\label{sec:coupl-transm-line} \label{sec:coupl-transm-line}
@ -271,57 +290,61 @@ to be spaced sufficiently far apart for the RWA to
apply\footnote{Consider, for example the SSH model where the apply\footnote{Consider, for example the SSH model where the
\(k\)-space density can be arbitrarily high depending on the length \(k\)-space density can be arbitrarily high depending on the length
of the chain.}. We therefore work in the frame of the of the chain.}. We therefore work in the frame of the
\(\tilde{c}_{m}\) and \(\tilde{f}_{ω} = f_{ω}\eu^{\iu \abs{ω}t}\) to \(h_{m}\) and \(\tilde{f}_{ω} = f_{ω}\eu^{\iu \abs{ω}t}\) to
obtain obtain
\begin{equation} \begin{equation}
\label{eq:10} \label{eq:10}
\tilde{H}_{I}= \frac{gΔx}{ \tilde{H}_{I}= \frac{gΔx}{
\sqrt{L_{A}}}_{β,m} \sqrt{L_{A}}}_{β,m}
G'_{β}(ω) \eu^{-\iu G'_{β}(ω) \eu^{-\iu
(ω^{0}_{m}-\abs{ω}) t} (\tilde{ω}^{0}_{m}-\abs{ω}) t}
U_{β,m} \tilde{f}_k^\tilde{c}_{m} \dd{ω} + \hc U_{β,m} \tilde{f}_k^h_{m} \dd{ω} + \hc.
\end{equation} \end{equation}
\begin{figure}[H] \begin{figure}[H]
\centering \centering
{\fontsize{8pt}{1em} {\fontsize{8pt}{1em}
\input{graphics/rwa_illustr.pdf_tex}} \input{graphics/rwa_illustr.pdf_tex}}
\caption{\label{fig:rwa_illustr} In the rotating wave approximation \caption{\label{fig:rwa_illustr} In the rotating wave approximation
The bare frequencies of the resonator only couple to the the bare frequencies of the resonator only couple to the
transmission line in frequency sub-intervals transmission line in frequency sub-intervals
\([ω_{m}-λ_{m}, ω_{m}+λ_{m}]\). A second effect that comes into \([ω_{m}-λ_{m}, ω_{m}+λ_{m}]\). A second effect that comes into
play is the geometrically induced coupling amplitude \(\tilde{G'}_{m}(ω)\), play is the geometrically induced coupling amplitude
which is visualized around \(ω_{m}\) under the assumption \(ω_{β} \(\tilde{G'}_{m}(ω)\), which is visualized around \(ω_{m}\) under
\approx ω_{0}^{m}\) for some small range of \(m\).} the assumption that all \(G'_{β}\) that enter into
\(_{β}U_{βm}G'_{β}\) share a similar profile which is a valid
assumption in the applications considered \cref{sec:appl-non-mark}.}
\end{figure} \end{figure}
For \(g \ll ω_{m}^{0}\) each \(\tilde{c}_{m}\) in \cref{eq:10} only For \(g \ll \tilde{ω}_{m}^{0}\) each \(h_{m}\) in \cref{eq:10} only
interacts with non-overlapping sub-intervals interacts with non-overlapping sub-intervals
\([ω^{0}_{m}-λ_{m}, ω^{0}_{m}+λ_{m}]\) of the transmission frequency axis \([\tilde{ω}^{0}_{m}-λ_{m}, \tilde{ω}^{0}_{m}+λ_{m}]\) of the transmission frequency axis
(rotating wave approximation) with \(g\ll λ_{m} \ll ω_{m}^{0}\). This (rotating wave approximation) with \(g\ll λ_{m} \ll \tilde{ω}_{m}^{0}\). This
situation is illustrated in \cref{fig:rwa_illustr}. Also, the coupling situation is illustrated in \cref{fig:rwa_illustr}. Also, the coupling
amplitude \(G_{β}(ω)\) is local in frequency space and can assist the amplitude \(G_{β}(ω)\) is local in frequency space and can assist the
RWA depending on the choice of parameters and how close the RWA depending on the choice of parameters and how close the
\(ω^{0}_{m}\) are to the \(ω_{k_{β}}\). We obtain \(\tilde{ω}^{0}_{m}\) are to the \(ω_{k_{β}}\), i.e. how local in
frequency space \(U_{βm}\) is. We obtain
\begin{equation} \begin{equation}
\label{eq:16} \label{eq:16}
\tilde{H}_{I}\approx \frac{gΔx}{ \tilde{H}_{I}\approx \frac{gΔx}{
\sqrt{L_{A}}}_{β,m}_{ω^{0}_{m}_{m}}^{ω^{0}_{m}_{m}} \sqrt{L_{A}}}_{β,m}_{\tilde{ω}^{0}_{m}_{m}}^{\tilde{ω}^{0}_{m}_{m}}
\eu^{-\iu \eu^{-\iu
(ω^{0}_{m}-\abs{ω}) t} (\tilde{ω}^{0}_{m}-\abs{ω}) t}
U_{β,m} \pqty{G'_{β}(ω) \tilde{f}_{ω}^† + G'_{β}(-ω) U_{β,m} \pqty{G'_{β}(ω) \tilde{f}_{ω}^† + G'_{β}(-ω)
\tilde{f}_{}^}\tilde{c}_{m} \dd{ω} + \hc \tilde{f}_{}^}h_{m} \dd{ω} + \hc
\end{equation} \end{equation}
For any finite \(Δx\) and For any finite \(Δx\) and
\(ω_{0}^{m}_{k_{β}}\gg \frac{2πc}{Δx n_{A}}\) we can assume \(\tilde{ω}_{0}^{m}_{k_{β}}\gg \frac{2πc}{Δx n_{A}}\) we can assume
\begin{equation} \begin{equation}
\label{eq:44} \label{eq:44}
G'_{β}\pqty{-\sgn(β) ω}\approx 0 G'_{β}\pqty{-\sgn(β) ω}\approx 0
\end{equation} \end{equation}
in \cref{eq:16}. in \cref{eq:16}.
As each \(\tilde{c}_{m}\) is now interacting with non-overlapping As each \({h}_{m}\) is now interacting with non-overlapping
transmission-line field modes, we can introduce a separate field for transmission-line field modes, we can introduce a separate field for
each \(\tilde{c}_{m}\) that commutes with all other fields and extend each \({h}_{m}\) that commutes with all other fields and extend
the integration bounds to infinity again\footnote{This is called the the integration bounds to infinity again\footnote{This is called the
``First Markov Approximation'' in \refcite{Gardiner1985}.}. ``First Markov Approximation'' in \refcite{Gardiner1985}.}.
Care has to be taken to maintain consistency with \cref{eq:44}, Care has to be taken to maintain consistency with \cref{eq:44},
@ -330,8 +353,8 @@ Care has to be taken to maintain consistency with \cref{eq:44},
\tilde{H}_{I}= \frac{gΔx}{ \tilde{H}_{I}= \frac{gΔx}{
\sqrt{L_{A}}}_{β,m}_{0}^{} \sqrt{L_{A}}}_{β,m}_{0}^{}
\eu^{-\iu \eu^{-\iu
(ω^{0}_{m}-\abs{ω}) t} (\tilde{ω}^{0}_{m}-\abs{ω}) t}
U_{β,m} G'_{β}(\sgn({β})ω) \tilde{f}^{m,†}_{\sgn({β}}{c}_{m} \dd{ω} + \hc U_{β,m} G'_{β}(\sgn({β})ω) \tilde{f}^{m,†}_{\sgn({β}}{h}_{m} \dd{ω} + \hc
\end{equation} \end{equation}
which becomes\footnote{A lot of discussion for a simple result :).} which becomes\footnote{A lot of discussion for a simple result :).}
\begin{equation} \begin{equation}
@ -339,39 +362,47 @@ which becomes\footnote{A lot of discussion for a simple result :).}
H_{I}= ∑_{m}_{-∞}^{} H_{I}= ∑_{m}_{-∞}^{}
\tilde{G}_{m}(k) {b}^{m,†}_{k}{c}_{m} \dd{k} \tilde{G}_{m}(k) {b}^{m,†}_{k}{c}_{m} \dd{k}
\end{equation} \end{equation}
upon transitioning out of the rotating frame with \(\tilde{G}_{m}(k) = upon transitioning out of the rotating frame with
\begin{equation}
\label{eq:15}
\tilde{G}_{m}(k) =
\frac{gΔx}{ \frac{gΔx}{
\sqrt{L_{A}}}_{β\gtrless 0}U_{β,m} G_{β}(k)δ_{\sgn(β),\sgn(k)}\). The equation of motion \sqrt{L_{A}}}_{β\gtrless 0}U_{β,m} G_{β}(k)δ_{\sgn(β),\sgn(k)}
\end{equation}
The equation of motion
for the transmission line modes become for the transmission line modes become
\begin{gather} \begin{gather}
\iu\dot{b}^{m}_{k} = ω^{B}_{k} b_{k}^{m,†} + \iu\dot{b}^{m}_{k} = ω^{B}_{k} b_{k}^{m,†} +
\tilde{G}_{m}(k) c_{m}\\ \tilde{G}_{m}(k) \eu^{-\iu \tilde{ω}^{0}_{m}t}h_{m}\\
\label{eq:19} \label{eq:19}
\implies b^{m}_{k}(t) = b^{m}_{k}(0) \eu^{-\iu ω_{k}^{B}t} -\iu \implies b^{m}_{k}(t) = b^{m}_{k}(0) \eu^{-\iu ω_{k}^{B}t} -\iu
\tilde{G}_{m}(k) ∫_{0}^{t}\eu^{-\iu \tilde{G}_{m}(k) ∫_{0}^{t}\eu^{-\iu
ω_{k}^{B}(t-s)} c_{m}(s)\dd{s}. ω_{k}^{B}(t-s)} \eu^{-\iu ω_{k}^{B}s}h_{m}(s)\dd{s}.
\end{gather} \end{gather}
The equation of motion for \(\tilde{c}_{m}\) is The equation of motion for \(h_{m}\) is
\begin{equation} \begin{equation}
\label{eq:21} \label{eq:21}
\iu\dot{\tilde{c}}_{m} = ∑_{n}V^{0}_{mn} \tilde{c}_n + \iu\dot{h}_{m} = ∑_{n}\bqty{V^{0}_{mn} + ε_{m}δ_{nm}}{h}_n +
\underbrace{\eu^{\iu ω_{m}^{0}t}_{-∞}^{}\tilde{G}^\ast_{m}(k) \underbrace{\eu^{\iu \tilde{ω}_{m}^{0}t}_{-∞}^{}\tilde{G}^\ast_{m}(k)
b_{k}^{m}(t)\dd{k}}_{\equiv I}. b_{k}^{m}(t)\dd{k}}_{\equiv I}.
\end{equation} \end{equation}
Further inspection of the rightmost term in \cref{eq:21} yields Further inspection of the rightmost term in \cref{eq:21} yields
\begin{equation} \begin{equation}
\label{eq:22} \label{eq:22}
\begin{aligned} \begin{aligned}
I &= \eu^{\iu ω_{m}^{0}t}_{-∞}^{}\tilde{G}^\ast_{m}(k) I &= \eu^{\iu \tilde{ω}_{m}^{0}t}_{-∞}^{}\tilde{G}^\ast_{m}(k)
b_{k}^{m}(t)\dd{k} \\ b_{k}^{m}(t)\dd{k} \\
&= ∫_{-∞}^{}\tilde{G}^\ast_{m}(k) &= ∫_{-∞}^{}\tilde{G}^\ast_{m}(k)
b_{k}^{m}(0)\eu^{-\iu (ω^{B}_{k} - ω^{0}_{m})t}\dd{k} -\iu_{0}^{t}_{-∞}^{}\abs{\tilde{G}_{m}(k)}^{2} b_{k}^{m}(0)\eu^{-\iu ({ω}^{B}_{k} - \tilde{ω}^{0}_{m})t}\dd{k} -\iu_{0}^{t}_{-∞}^{}\abs{\tilde{G}_{m}(k)}^{2}
\tilde{c}_{m}(s)\eu^{-\iu ω^{B}_{k}(t-s)} \eu^{\iu {h}_{m}(s)\eu^{-\iu {ω}^{B}_{k}(t-s)} \eu^{\iu
ω^{0}_{m}(t-s)}\dd{k}\dd{s}\\ \tilde{ω}^{0}_{m}(t-s)}\dd{k}\dd{s}\\
&=II + III. &=II + III.
\end{aligned} \end{aligned}
\end{equation} \end{equation}
Inspired by the RWA, we now assume As the RWA limits the interaction of each \(h_{m}\) to an narrow
frequency/momentum band, we assume that \(\tilde{G}_{m}\) is
approximately constant close to the resonance frequencies \([\tilde{ω}^{0}_{m}-λ_{m}, \tilde{ω}^{0}_{m}+λ_{m}]\)
\begin{equation} \begin{equation}
\label{eq:23} \label{eq:23}
\begin{aligned} \begin{aligned}
@ -379,24 +410,21 @@ Inspired by the RWA, we now assume
δ_{m}\tilde{G}_{m}\pqty{\sgn(k) ω_{m}^{0}\frac{n_{B}}{c n_{A}}} = δ_{m}\tilde{G}_{m}\pqty{\sgn(k) ω_{m}^{0}\frac{n_{B}}{c n_{A}}} =
δ_{m}\frac{gΔx}{\sqrt{L_{A}}}_{β}U_{βm}G_{β}\pqty{\sgn(k) ω_{m}^{0}\frac{n_{B}}{c δ_{m}\frac{gΔx}{\sqrt{L_{A}}}_{β}U_{βm}G_{β}\pqty{\sgn(k) ω_{m}^{0}\frac{n_{B}}{c
n_{A}}} δ_{\sgn(β),\sgn(k)} \\ n_{A}}} δ_{\sgn(β),\sgn(k)} \\
&\equiv_{β}g^{0}_{β} U_{βm}δ_{\sgn(β),\sgn(k)} \equiv g_{m, \sgn(k)} &\equiv_{β}g^{0}_{β}\sqrt{ω^{B}_{k}} U_{βm}δ_{\sgn(β),\sgn(k)} \equiv g_{m, \sgn(k)}\sqrt{ω^{B}_{k}}
\end{aligned} \end{aligned}
\end{equation} \end{equation}
in the interval \([ω^{0}_{m}-λ_{m}, ω^{0}_{m}+λ_{m}]\) (see in the interval (see \cref{eq:16}) where \(δ_{m}\) is a possible
\cref{eq:16}) where \(δ_{m}\) is a possible scaling factor to better approximate scaling factor to better approximate \(\tilde{G}_{m}(k)\) as a
\(\tilde{G}_{m}(k)\) as a constant in \cref{eq:16}. constant in \cref{eq:16}.
Additionally we resurrect\footnote{Within Using this in \(I\), we obtain
the RWA this is all equivalent, but I prefer having the input field
proportional to the electric field!} the \(ω_{k}^{B}\) dependence of
\(G_{m}(k)\) in \(I\) to obtain
\begin{equation} \begin{equation}
\label{eq:24} \label{eq:24}
\begin{aligned} \begin{aligned}
II &= \frac{\eu^{\iu ω_{m}^{0}t}}{\sqrt{ω_{m}^{0}}} \bqty{g_{m,+}^\ast_{0}^{}\sqrt{ω^{B}_{k}}b^{m}_{k}(0)\eu^{-\iu II &= {\eu^{\iu ω_{m}^{0}t}} \bqty{g_{m,+}^\ast_{0}^{}\sqrt{ω^{B}_{k}}b^{m}_{k}(0)\eu^{-\iu
ω^{B}_{k}t}\dd{k} + g_{m,-}^\ast_{-∞}^{0}\sqrt{ω^{B}_{k}}b^{m}_{k}(0)\eu^{-\iu ω^{B}_{k}t}\dd{k} + g_{m,-}^\ast_{-∞}^{0}\sqrt{ω^{B}_{k}}b^{m}_{k}(0)\eu^{-\iu
ω^{B}_{k}t}\dd{k}}\\ ω^{B}_{k}t}\dd{k}}\\
&\equiv \frac{\eu^{\iu ω_{m}^{0}t}}{\sqrt{ω_{m}^{0}}}\pqty{ &\equiv {\eu^{\iu ω_{m}^{0}t}}\pqty{
g_{m,+}^\ast b_{\inputf,+}^{m}(t) + g_{m,-}^\ast b_{\inputf,-}^{m}(t)}, g_{m,+}^\ast b_{\inputf,+}^{m}(t) + g_{m,-}^\ast b_{\inputf,-}^{m}(t)},
\end{aligned} \end{aligned}
\end{equation} \end{equation}
@ -405,36 +433,45 @@ right(left)-moving input field and is proportional to the annihilation
part of the electric field. The second part of \cref{eq:22} becomes part of the electric field. The second part of \cref{eq:22} becomes
\begin{equation} \begin{equation}
\label{eq:25} \label{eq:25}
III= -\iu_{0}^{t}\eu^{\iu ω^{0}_{m}(t-s)}\tilde{c}_{m}(s) III= -\iu_{0}^{t}\eu^{\iu \tilde{ω}^{0}_{m}(t-s)}{h}_{m}(s)
\bqty{ \abs{g_{m,+}}^{2}_{0}^{}\eu^{-\iu ω^{B}_{k}(t-s)} \dd{k} + \abs{g_{m,-}}^{2}_{-∞}^{0}\eu^{-\iu ω^{B}_{k}(t-s)} \dd{k}}\dd{s}. \bqty{ \abs{g_{m,+}}^{2}_{0}^{}ω^{B}_{k}\eu^{-\iu ω^{B}_{k}(t-s)} \dd{k} + \abs{g_{m,-}}^{2}_{-∞}^{0}ω^{B}_{k}\eu^{-\iu ω^{B}_{k}(t-s)} \dd{k}}\dd{s}.
\end{equation} \end{equation}
Now we use the identity Now we use the identity
\begin{equation} \begin{equation}
\label{eq:26} \label{eq:26}
_{0}^{}\eu^{-\iu ω^{B}_{k}(t-s)} \dd{k} = \frac{n_{B}}{c} _{0}^{}ω^{B}_{k}\eu^{-\iu ω^{B}_{k}(t-s)} \dd{k} = -\iu_{s}\frac{n_{B}}{c}
\bqty{\mathcal{P}\frac{-i}{t-s} + π δ(t-s)}, \bqty{\mathcal{P}\frac{-i}{t-s} + π δ(t-s)},
\end{equation} \end{equation}
but neglect the principal value, as it leads only to rapidly but neglect the principal value, as it leads only to rapidly
oscillating terms that are inconsistent with the RWA, to obtain oscillating terms that are inconsistent with the RWA, to obtain
\begin{equation} \begin{equation}
\label{eq:27} \label{eq:27}
III= -2\iu η_{m}_{0}^{t}\eu^{\iu ω^{0}_m(t-s)}\tilde{c}_{m}(s) \begin{aligned}
δ(t-s)\dd{s} = -\iu η_{m} \tilde{c}_{m}(t), III&= -2\iu η_{m}_{0}^{t}\eu^{\iu
\tilde{ω}^{0}_m(t-s)}\bqty{\pqty{\tilde{ω}^{0}_{m}+\iu_{s}}\tilde{c}_{m}(s)}
δ(t-s)\dd{s}\\
&= -\iu η_{m} h_{m}(t) + \frac{η_{m}}{\tilde{ω}^{0}_{m}}
\dot{h}_{m}(t) \overset{η_{m}\ll \tilde{ω}_{m}^{0},\, V\ll H_{0}}{\approx}-\iu η_{m} h_{m}(t),
\end{aligned}
\end{equation} \end{equation}
where the factor \(1/2\) in the last equality stems from the fact that where the factor \(1/2\) in the last equality stems from the fact that
we only use half of the delta function and we only use half of the delta function and
\begin{equation} \begin{equation}
\label{eq:45} \label{eq:45}
η_{m}\equiv π\frac{n_{B}}{c}\bqty{\abs{g_{m,-}}^{2}+\abs{g_{m,+}}^{2}}. η_{m}\equiv π\frac{\tilde{ω}^{0}_{m} n_{B}}{c}\bqty{\abs{g_{m,-}}^{2}+\abs{g_{m,+}}^{2}}.
\end{equation} \end{equation}
We have also neglected the correction to the eigen-energy
\(η_{m}/\tilde{ω}^{0}_{m}\) for the same reason we neglected the
principal value.
Note that \cref{eq:45} is an incoherent sum of the couplings to the Note that \cref{eq:45} is an incoherent sum of the couplings to the
right moving and left moving fields in the transmission line. right moving and left moving fields in the transmission line.
Altogether we arrive at Altogether we arrive at
\begin{equation} \begin{equation}
\label{eq:28} \label{eq:28}
\dot{\tilde{c}}_{m} = -\iu\bqty{_{n}V^{0}_{mn} \tilde{c}_n + \iu\dot{h}_{m} = {_{n}\bqty{V^{0}_{mn} + \pqty{ε_{m}-\iu η_{m}}δ_{nm}}{h}_n +
\frac{\eu^{\iu ω_{m}^{0}t}}{\sqrt{ω_{m}^{0}}} {\eu^{\iu \tilde{ω}_{m}^{0}t}}
_{σ=\pm}g_{m,σ}^\ast b_{\inputf,σ}^{m}(t)} - η_{m}\tilde{c}_{m}. _{σ=\pm}g_{m,σ}^\ast b_{\inputf,σ}^{m}(t)} .
\end{equation} \end{equation}
The usual situation is that \(b^{m}_{\inputf, -} = 0\) and we can The usual situation is that \(b^{m}_{\inputf, -} = 0\) and we can
restrict ourselves to the coupling to the right-moving input field. restrict ourselves to the coupling to the right-moving input field.
@ -445,13 +482,12 @@ Integrating \cref{eq:19} over all \(k\) yields
\begin{equation} \begin{equation}
\label{eq:29} \label{eq:29}
\begin{aligned} \begin{aligned}
\frac{b_{\outputf}^{m}(x,t)}{\sqrt{ω^{0}_{m}}} &\equiv {b_{\outputf}^{m}(x,t)} &\equiv
\frac{1}{\sqrt{ω_{m}^{0}}}\sqrt{ω^{B}_{k}} b_{k}^{m}(t) \eu^{\iu k \sqrt{ω^{B}_{k}} b_{k}^{m}(t) \eu^{\iu k
t}\dd{k}\\ t}\dd{k}\\
&= &= b_{\inputf}^{m}(x, t) -\iu
\frac{1}{\sqrt{ω_{m}^{0}}} b_{\inputf}^{m}(x, t) -\iu g_{m,\sgn(x)}\frac{\tilde{ω}^{0}_{m}π n_{B}}{c}
g_{m,\sgn(x)}\frac{π n_{B}}{c} {h}_{m}(τ(x,t))\eu^{-i \tilde{ω}^{0}_{m}τ(x,t)}Θ(τ(x,t)),
\tilde{c}_{m}(τ(x,t))\eu^{-i ω^{0}_{m}τ(x,t)}Θ(τ(x,t)),
\end{aligned} \end{aligned}
\end{equation} \end{equation}
which is the input-output relation with the retarded time which is the input-output relation with the retarded time
@ -469,11 +505,12 @@ the time argument is properly retarded. We defined
used that used that
\begin{equation} \begin{equation}
\label{eq:42} \label{eq:42}
_{0}^{}\eu^{-\iu ω^{B}_{k}(t-s)}\eu^{\pm\iu k x} \dd{k} = _{0}^{}ω^{B}_{k}\eu^{-\iu ω^{B}_{k}(t-s)}\eu^{\pm\iu k x} \dd{k} =
\frac{n_{B}}{c} -\iu_{s}\frac{n_{B}}{c}
\bqty{\mathcal{P}\frac{-i}{t-s \pm \frac{x n_{B}}{c}} + π δ\pqty{t-s\mp \bqty{\mathcal{P}\frac{-i}{t-s \pm \frac{x n_{B}}{c}} + π δ\pqty{t-s\mp
\frac{x n_{B}}{c}}}. \frac{x n_{B}}{c}}},
\end{equation} \end{equation}
along with similar arguments to the above.
The case of \(x=0\) is recovered by defining The case of \(x=0\) is recovered by defining
\begin{equation} \begin{equation}
@ -483,7 +520,7 @@ The case of \(x=0\) is recovered by defining
which amounts to taking half of each delta function in which amounts to taking half of each delta function in
\cref{eq:42}. It shall be noted, that it is physical to assume \cref{eq:42}. It shall be noted, that it is physical to assume
\(x>0\), as we necessarily measure outside the fibre-coupler between \(x>0\), as we necessarily measure outside the fibre-coupler between
transmission line and resonator. By neglecting the \(k\)-depnedence of transmission line and resonator. By neglecting the \(k\)-dependence of
the coupling in \cref{eq:23} through invocation of the RWA we have the coupling in \cref{eq:23} through invocation of the RWA we have
effectively ignored length \(Δx\), but to maintain consistency with effectively ignored length \(Δx\), but to maintain consistency with
\cref{eq:44} we should assume it to be finite. \cref{eq:44} we should assume it to be finite.
@ -496,14 +533,15 @@ first diagonalize \(V^{0}_{mn} + δ_{mn}\pqty{ε_{m}-i η_{m}}\)
\begin{equation} \begin{equation}
\label{eq:65} \label{eq:65}
V^{0}_{mn} + δ_{mn}\pqty{ε_{m}-i η_{m}} \to_{γγ'} V^{0}_{mn} + δ_{mn}\pqty{ε_{m}-i η_{m}} \to_{γγ'}
δ_{γγ'}_{γ}-\iu \tilde{n}_{γ}) δ_{γγ'}_{γ}-\iu λ_{γ})
\end{equation} \end{equation}
to obtain \(O_{mγ}(t)\) and find using the transformation \(O_{nγ}\) (see \cref{sec:rotating-frames})
and find
\begin{equation} \begin{equation}
\label{eq:32} \label{eq:32}
\dot{d}_{γ} = ∑_{m}\pqty{O^{-1}(t)}_{γm}\dot{\tilde{c}}_{m} = \dot{d}_{γ} = ∑_{m}O^{-1}_{γm}\dot{h}_{m} =
-\iu\bqty{\pqty{ω_{γ} - \iu \tilde{η}_{γ}}d_{γ} + -\iu\bqty{\pqty{ω_{γ} - \iu λ_{γ}}d_{γ} +
_{σ=\pm}_{m}\pqty{O^{-1}(t)}_{γm}\frac{g_{m,σ}^\ast }{\sqrt{ω_{m}^{0}}} \eu^{\iu ω_{m}^{0}t} _{σ=\pm}_{m}\pqty{O^{-1}}_{γm}{g_{m,σ}^\ast } \eu^{\iu \tilde{ω}_{m}^{0}t}
b_{\inputf,σ}^{m}(t)}. b_{\inputf,σ}^{m}(t)}.
\end{equation} \end{equation}
@ -511,11 +549,11 @@ We now introduce some additional simplifications beginning with
equating all input fields \(b_{\inputf}^{m}\). This is allowed, as we equating all input fields \(b_{\inputf}^{m}\). This is allowed, as we
will transition to the classical picture later, where the commutation will transition to the classical picture later, where the commutation
relations do not matter. We also assume that we're working in a region relations do not matter. We also assume that we're working in a region
in \(m\) space, where the \(g_{β}^{0}\approx \sqrt{κ}\) and in \(m\) space, where the \(\sqrt{ω_{0}}g_{β}^{0}\approx \sqrt{κ}\) and
\(\sqrt{ω^{0}_{m}}\approx\sqrt{ω_{0}}\), where \(ω_{0}\) is a typical \(\tilde{ω}^{0}_{m}\approx{ω_{0}}\), where \(ω_{0}\) is a typical
frequency in the input field, can be assumed to be approximately frequency in the input field, can be assumed to be approximately
constant. With these considerations in mind we can simplify constant. With these considerations in mind we can simplify
\cref{eq:32} to \cref{eq:45,eq:32} to
\begin{equation} \begin{equation}
\label{eq:64} \label{eq:64}
η_{m}=\abs{κ}\frac{πn_{B}}{c}_{σ=\pm,β,β'}U_{βm}U^\ast_{β'm}δ_{\sgn(β),σ} δ_{\sgn(β'),σ} η_{m}=\abs{κ}\frac{πn_{B}}{c}_{σ=\pm,β,β'}U_{βm}U^\ast_{β'm}δ_{\sgn(β),σ} δ_{\sgn(β'),σ}
@ -524,9 +562,9 @@ and
\begin{gather} \begin{gather}
\label{eq:34} \label{eq:34}
\dot{d}_{γ} = \dot{d}_{γ} =
-\iu\bqty{\pqty{ω_{γ}-\iu \tilde{η}_{γ}}d_{γ} + \sqrt{κ^\ast}_{σ=\pm} -\iu\bqty{\pqty{ω_{γ}-\iu λ_{γ}}d_{γ} + \sqrt{κ^\ast}_{σ=\pm}
U^{σ}_{γ}(t) \frac{b_{\inputf}(t)}{\sqrt{ω_{0}}}}\\ U^{σ}_{γ}(t) {b_{\inputf}(t)}}\\
U^{σ}_{γ}(t) = ∑_{m,β} δ_{\sgn({β}),σ}U^\ast_{βm}\pqty{O^{-1}(t)}_{γm} \eu^{\iu ω_{m}^{0}t}= ∑_{m,β} δ_{\sgn({β}),σ}U^\ast_{βm}\pqty{O^{-1}}_{γm}\eu^{\iu_{m}^{0}_{m})t}. U^{σ}_{γ}(t) = ∑_{m,β} δ_{\sgn({β}),σ}U^\ast_{βm}\pqty{O^{-1}}_{γm}\eu^{\iu \tilde{ω}_{m}^{0}t}.
\end{gather} \end{gather}
These simplifications still capture the essence of the physics, as These simplifications still capture the essence of the physics, as
@ -535,14 +573,14 @@ demonstrated in the current long-range SSH experiment.
We can now proceed to integrate \cref{eq:34} to obtain We can now proceed to integrate \cref{eq:34} to obtain
\begin{equation} \begin{equation}
\label{eq:36} \label{eq:36}
d_{γ}(t)= d_{γ}(0) \eu^{-\pqty{\iu ω_{γ} + \tilde{η}_{γ}}t} - d_{γ}(t)= d_{γ}(0) \eu^{-\pqty{\iu ω_{γ} + {λ}_{γ}}t} -
\frac{i}{\sqrt{κ}} Σ_{σ=\pm}_{0}^{t}χ_{γ}(t-s) U^{σ}_{γ}(s) \frac{i}{\sqrt{κ}} Σ_{σ=\pm}_{0}^{t}χ_{γ}(t-s) U^{σ}_{γ}(s)
\frac{b_{\inputf,σ}(t)}{\sqrt{ω_{0}}}\dd{s} {b_{\inputf,σ}(t)}\dd{s}
\end{equation} \end{equation}
with with
\begin{equation} \begin{equation}
\label{eq:37} \label{eq:37}
χ_{γ}(t) = \abs{κ} \eu^{-\pqty{\iu ω_{γ} + \tilde{η}_{γ}}t}. χ_{γ}(t) = \abs{κ} \eu^{-\pqty{\iu ω_{γ} + λ_{γ}}t}.
\end{equation} \end{equation}
When constructing the total output field, we have to remember how the When constructing the total output field, we have to remember how the
@ -559,8 +597,8 @@ whole copy of the input field.
This leads us to This leads us to
\begin{equation} \begin{equation}
\label{eq:38} \label{eq:38}
\frac{b_{\outputf}(x,t)}{\sqrt{ω_{0}}} \equiv {b_{\outputf}(x,t)} \equiv
\frac{1}{\sqrt{ω_{0}}} b_{\inputf}(x, t) -i θ(τ(x,t)) \frac{\sqrt{κ}πn_{B}}{c} b_{\inputf}(x, t) -i θ(τ(x,t)) \frac{\sqrt{κ} πn_{B}}{c}
_{γ}\bqty{U^{\sgn(x)}_{γ}\pqty{τ(x,t)}}^\ast d_{γ}(τ(x,t)) _{γ}\bqty{U^{\sgn(x)}_{γ}\pqty{τ(x,t)}}^\ast d_{γ}(τ(x,t))
\end{equation} \end{equation}
@ -585,7 +623,8 @@ position \(x>0\) we have
\ev{{b_{\outputf}(x>0,t)}} = \ev{{b_{\outputf}(x>0,t)}} =
\ev{b_{\inputf}(x,t)} -∫_{0}^{τ(x,t)}χ_{++}(τ(x,t),s) \ev{b_{\inputf}(s)} \dd{s}. \ev{b_{\inputf}(x,t)} -∫_{0}^{τ(x,t)}χ_{++}(τ(x,t),s) \ev{b_{\inputf}(s)} \dd{s}.
\end{equation} \end{equation}
with \(b_{\inputf}(s) = b_{\inputf,+}(s) + b_{\inputf,-}(s) = b_{\inputf,+}(s)\). with \(b_{\inputf}(s) = b_{\inputf,+}(s) + b_{\inputf,-}(s) =
b_{\inputf,+}(s)\).
\subsection{Langevin-Equations for Lossy Oscillators} \subsection{Langevin-Equations for Lossy Oscillators}
\label{sec:lang-equat-lossy} \label{sec:lang-equat-lossy}
@ -644,7 +683,7 @@ terms and express everything in terms of the \(c_{m}\) using
\(T\). Subsequently, we change into a rotating frame \(T\). Subsequently, we change into a rotating frame
\begin{equation} \begin{equation}
\label{eq:66} \label{eq:66}
\tilde{c}_{m} = c_{m}\eu^{\iu ω^{0}_{m}t}, h_{m} = c_{m}\eu^{\iu \tilde{ω}^{0}_{m}t},
\end{equation} \end{equation}
rotating away only the unitary evolution. Applying the rotating wave rotating away only the unitary evolution. Applying the rotating wave
and first Markov approximations works out precisely as in and first Markov approximations works out precisely as in
@ -660,34 +699,25 @@ replacements along the way
\tilde{G}^\ast_{m}(k) &\rightarrow\tilde{G}^{-1}_{m}(k) = \frac{g^\astΔx}{\sqrt{L_{A}}}_{β} U^{-1}_{} \tilde{G}^\ast_{m}(k) &\rightarrow\tilde{G}^{-1}_{m}(k) = \frac{g^\astΔx}{\sqrt{L_{A}}}_{β} U^{-1}_{}
G^\ast_{β}(k) δ_{\sgn(β),\sgn(k)}\\ G^\ast_{β}(k) δ_{\sgn(β),\sgn(k)}\\
g_{m,σ}&\rightarrow g_{m,σ}=∑_{β}g^{0}_{β} U_{βm}δ_{\sgn(β),σ}\\ g_{m,σ}&\rightarrow g_{m,σ}=∑_{β}g^{0}_{β} U_{βm}δ_{\sgn(β),σ}\\
g^\ast_{m,σ}&\rightarrow g^{-1}_{m,σ}=∑_{β}\pqty{g^{0}_{β}}^\ast U^{-1}_{}δ_{\sgn(β),σ}\\ g^\ast_{m,σ}&\rightarrow \bar{g}_{m,σ}=∑_{β}\pqty{g^{0}_{β}}^\ast U^{-1}_{}δ_{\sgn(β),σ}\\
\end{align} \end{align}
which gives us which gives us
\begin{align} \begin{align}
\label{eq:72} \label{eq:72}
η_{m}=\frac{π n_{B}}{c}_{σ} g_{mσ}g^{-1}_{mσ}, η_{m}=\frac{\tilde{ω}_{m}^{0}π n_{B}}{c}_{σ} g_{mσ}\bar{g}_{mσ},
\end{align} \end{align}
which might have an imaginary part. which might have an imaginary part.
This leaves us with This leaves us with
\begin{equation} \begin{equation}
\label{eq:73} \label{eq:73}
\dot{\tilde{c}}_{m}= -\iu\bqty{_{n}V^{0}_{mn}\eu^{\iu \iu\dot{h}_{m} = {_{n}\Bqty{V^{0}_{mn} + \bqty{ε_{m}-\iu \pqty{η_{m} +
\pqty{ε_{m}_{n}}t} \tilde{c}_{n} + \frac{\eu^{\iu ω^{0}_{m}t}}{\sqrt{ω^{0}_{m}}}_{σ=\pm}g_{mσ}^{-1}b_{\inputf,σ}^{m}} - \pqty{η_{m} + η_{m}^{0}}}δ_{nm}}{h}_n +
η_{m}^{0}}\tilde{c}_{m}. {\eu^{\iu \tilde{ω}_{m}^{0}t}}
\end{equation} _{σ=\pm}\bar{g}_{m,σ} b_{\inputf,σ}^{m}(t)},
To remove the residual explicit time dependence in \cref{eq:73} we
define
\begin{equation}
\label{eq:75}
h_{m}=\tilde{c}_{m}\eu^{-\iu ε_{m}t}
\end{equation}
and find
\begin{equation}
\label{eq:76}
\dot{h}_{m}= -\iu\bqty{_{n}\Bqty{V^{0}_{mn}+ \bqty{ε_{m}-\iu
\pqty{η_{m}^{0}_{m}}}δ_{nm}}h_{m}} + \frac{\eu^{\iu \pqty{ω^{0}_{m}_{m}}t}}{\sqrt{ω^{0}_{m}}}_{σ=\pm}g_{mσ}^{-1}b_{\inputf,σ}^{m}.
\end{equation} \end{equation}
where the \(η_{m}\) might shift the energies \(ε_{m}\)
slightly.
Diagonalizing Diagonalizing
\begin{equation} \begin{equation}
@ -698,20 +728,19 @@ Diagonalizing
and defining and defining
\begin{equation} \begin{equation}
\label{eq:78} \label{eq:78}
d_{γ} = ∑_{n}O^{-1}_{γn}h_{n} = ∑_{n}O^{-1}_{γn}\eu^{-\iu d_{γ} = ∑_{n}O^{-1}_{γn}h_{n} \implies h_{n}=∑_{γ}O_{nγ}d_{γ}
ε_{n}t}\tilde{c}_{n}\implies h_{n}=∑_{γ}\eu^{\iu ε_{n}t}O_{nγ}d_{γ}
\end{equation} \end{equation}
will give us the equivalent of \cref{eq:32} will give us the equivalent of \cref{eq:32}
\begin{equation} \begin{equation}
\label{eq:80} \label{eq:80}
\dot{d}_{γ}=-\iu\pqty{ω_{γ}+\sqrt{κ^\ast}_{σ=\pm}U^{σ}_{γ}\frac{b_{\inputf,σ}}{\sqrt{ω_{0}}}}d_{γ} \dot{d}_{γ}=-\iu\pqty{ω_{γ}+\sqrt{κ^\ast}_{σ=\pm}U^{σ}_{γ}{b_{\inputf,σ}}}d_{γ}
- λ_{γ}d_{γ} - λ_{γ}d_{γ}
\end{equation} \end{equation}
where we have set \(g_{β}^{0}=\sqrt{κ}\) and defined where we have set \(\sqrt{ω_{0}}g_{β}^{0}=\sqrt{κ}\) and defined
\begin{equation} \begin{equation}
\label{eq:82} \label{eq:82}
U^{σ}_{γ} = U^{σ}_{γ} =
_{}\eu^{\iu\pqty{ω^{0}_{m}_{m}}t}O^{-1}_{γm}U^{-1}_{}δ_{\sgn(β),σ}. _{}\eu^{\iu\tilde{ω}^0_mt}O^{-1}_{γm}U^{-1}_{}δ_{\sgn(β),σ}.
\end{equation} \end{equation}
This also simplifies \cref{eq:64} to This also simplifies \cref{eq:64} to
\begin{equation} \begin{equation}
@ -722,7 +751,7 @@ This also simplifies \cref{eq:64} to
Further defining Further defining
\begin{align} \begin{align}
\label{eq:83} \label{eq:83}
\bar{U}^{σ}_{γ}&=∑_{}\eu^{-\iu\pqty{ω^{0}_{m}_{m}}t}O_{mγ}U_{βm}δ_{\sgn(β),σ}\qq{and}& \bar{U}^{σ}_{γ}&=∑_{}\eu^{-\iu\tilde{ω}^0_mt}O_{mγ}U_{βm}δ_{\sgn(β),σ}\qq{and}&
χ_{γ}&=\abs{κ}\eu^{-\pqty{\iu ω_{γ}_{γ}}t}, χ_{γ}&=\abs{κ}\eu^{-\pqty{\iu ω_{γ}_{γ}}t},
\end{align} \end{align}
we obtain we obtain
@ -740,7 +769,20 @@ input fields
These equations are essentially the same as \cref{eq:39,eq:40}, These equations are essentially the same as \cref{eq:39,eq:40},
accounting for the non-unitary transformations and the apriori decay accounting for the non-unitary transformations and the apriori decay
rates when diagonalizing the equations of motion for the \(\tilde{c}_{m}\). rates when diagonalizing the equations of motion for the \(h_{m}\).
For completeness, we give the equivalent of \cref{eq:67} for the non-unitary case
\begin{equation}
\label{eq:35}
\begin{array}{@{}l| c c c c@{}}
& α_{β} & c_{m} & h_{n} & d_{γ}\\
\midrule
a_{β} & 1 & U_{βm}\equiv T_{i_{0},β;m} & U_{βm}\eu^{-\iu \tilde{ω}^0_mt} &_{m}U_{βm}O_{mγ}\eu^{-\iu \tilde{ω}^0_mt} \\
c_{m} & U^{-1}_{}\equiv T^{-1}_{m;i_{0}} & 1 & δ_{mn}\eu^{-\iu \tilde{ω}^0_mt} & O_{mγ}\eu^{-\iu \tilde{ω}^0_nt} \\
h_{n} & U^{-1}_{}\eu^{\iu \tilde{ω}^0_nt} & δ_{nm}\eu^{\iu \tilde{ω}^0_mt} & 1 & O_{nγ} \\
d_{γ} &_{m} U^{-1}_{} O^{-1}_{γm} \eu^{\iu \tilde{ω}^0_mt} & O^{-1}_{γn} \eu^{\iu \tilde{ω}^0_mt} & O^{-1}_{γm} & 1 \\
\end{array}.
\end{equation}
\section{Application to the Non-Markovian Quantum Walk} \section{Application to the Non-Markovian Quantum Walk}
\label{sec:appl-non-mark} \label{sec:appl-non-mark}