update notes and graphics

This commit is contained in:
Valentin Boettcher 2023-07-11 16:43:56 -04:00
parent 14e93dbf8b
commit 2dda893d95
5 changed files with 1765 additions and 857 deletions

View file

@ -50,7 +50,7 @@
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.84005445)%
\begin{picture}(1,0.84005373)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength,page=1]{walker_setup.pdf}}%

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

After

Width:  |  Height:  |  Size: 35 KiB

File diff suppressed because it is too large Load diff

Before

Width:  |  Height:  |  Size: 425 KiB

After

Width:  |  Height:  |  Size: 507 KiB

View file

@ -68,7 +68,7 @@ length of the cavity/resonator that hosts the electric field. The
modes have wave numbers \(k_{β} = 2πβ/L_{A}\) for \(β \in \ZZ\) and
frequencies \(ω_{k_β} = c \abs{k_{β}}/n_{A}\), where \(n_{A}\) is the
refractive index inside the cavity. For simplicity we set \(\hbar
= 1\) such that time is measured in units of inverse energy.
= 1\) such that energy is measured in units of frequency.
\subsection{Transformations and Rotating Frames}
\label{sec:rotating-frames}
@ -145,14 +145,16 @@ mode within that resonator. The eigenmodes \(c_{m}\) of the coupled
oscillators obeying \(H_{0}\) are related to the bare modes
\(α_{j,α}\) by \cref{eq:43}. The frame in which the equations of
motion for the modes reflects the target Hamiltonian
\(\tilde{H}_{A}'\) are reached through a transformation into a
\(H^{T}\) are reached through a transformation into a
rotating frame in \cref{eq:12} leading to the \(h_{n}\) modes. The
resulting equations of motion for the \(h_{n}\) can be decoupled by
the transformation \(O_{mγ}\) giving the eigenmodes of the target
Hamiltonian \(d_{γ}\) including damping.
It is important to keep in mind that the actual observables are the
\(α_{β} = α_{i_{0}}\) which couple to the transmission line.
\(α_{β} = α_{i_{0}}\) which couple to the transmission line, wheras
the modes in the rotating frame \(h_{n}\) correspond to the amplitudes
that evolve according to the target Hamiltonian.
Let us list the relation between the \(a\), \(c\), \(h\) and \(d\) operators
for later reference
@ -841,7 +843,8 @@ where \(X=S,B\).
modulation through the EOM to give us an effectively
time-independent target Hamiltonian \(H^{T}_{mn}\). Diagonalizing
this Hamiltonian gives us the energies \(ω_{λ}\) that we can
detect when measuring the transmission (Green).}
detect when measuring the transmission (Green). Damping terms have
been left out of the picture for simplicity.}
\end{figure}
These loops are coupled to each other with amplitude \(δ\eu^{\iu ϕ}\) which can
possibly contain a phase due to the choice of the coordinate
@ -1065,7 +1068,7 @@ To account for this, we modify \cref{eq:51} to
\begin{aligned}
H_{A}= ω_{s}a_{S,0}^†a_{S,0} &+ ∑_{n=-N}^{N} ω_{n}^{B}a_{B,n}^†a_{B,n} + δ \pqty{\eu^{\iu
ϕ}a_{B,0}^†a_{S,0} + \eu^{-\iu ϕ}a_{S,0}^†a_{B,0}} + ∑_{mn}J_{mn}(t) a_{B,m}^†a_{B,n}
\\&- \iu a_{S,0}^†a_{S,0}η_{S} a^†a - \iu \pqty{η_{S}+2Δδ}_{n}a_{B,n}^†a_{B,n}
\\&- \iu η_{S}a_{S,0}^†a_{S,0} - \iu \pqty{η_{S}+2Δδ}_{n}a_{B,n}^†a_{B,n}
\end{aligned}
\end{equation}
with the damping rates \(η_{S}\) and the damping asymmetry
@ -1113,6 +1116,8 @@ With this, we have for \(m=\pm,-N,-N+1,\ldots,-1,1,2,\ldots,N\)
\frac{η_{S}+ η_{B}}{2}.
\end{aligned}
\end{equation}
Note that the eigenenergies of the \(\pm\) modes are slightly shifted.
Next, we compute the transformation of the interaction
\(T^{-1}VT\) (see \cref{eq:74}) and find
\begin{equation}
@ -1128,6 +1133,9 @@ Next, we compute the transformation of the interaction
Evidently, the matrix \(T^{-1}VT\) is not hermitian except in the
limit \(Δ\to 0\).
In all of the above one can set \(\cos(ψ)=1\) to only account for
\(Δ\) in leading order.
\subsection{Rotating-Wave Interaction}
\label{sec:rotat-wave-inter}
@ -1149,14 +1157,14 @@ Let us now assume that the voltage modulation takes the form of
\pqty{\hat{ω}_{j}+\hat{δ}_{j}}t}\eu^{-\iu \varphi_{j}}}.
\end{equation}
Transforming into the rotating frame of the \(\tilde{c}_{m}\) (see
Transforming into the rotating frame of the \({h}_{m}\) (see
\cref{eq:66}), we have
\begin{equation}
\label{eq:105}
\tilde{V}_{mn}=-\iu_{j}\hat{V}_{mn}\hat{f}_{i}\bqty{\eu^{i \pqty{\hat{ω_{j}} +\hat{δ}_{j} -
\pqty{ω^{0}_{n}^{0}_{m}}}t} \eu^{\iu \varphi_{j}}
\pqty{ω^{0}_{n}^{0}_{m} + ε_{m}_{n}}}t} \eu^{\iu \varphi_{j}}
- \eu^{-i \pqty{\hat{ω_{j}} +
\hat{δ}_{j}+\pqty{ω^{0}_{n}^{0}_{m}}}t} \eu^{-\iu \varphi_{j}}}.
\hat{δ}_{j}+\pqty{ω^{0}_{n}^{0}_{m} + ε_{m}_{n}}}t} \eu^{-\iu \varphi_{j}}}.
\end{equation}
As discussed in \cref{sec:choice-hybridization}, we want to couple the
@ -1294,7 +1302,7 @@ To calculate the susceptibility (see \cref{eq:87}), we evaluate
with
\begin{equation}
\label{eq:117}
\tilde{ω}_{\pm} \equiv ω_{σ}^{0}_{σ} = ω_{S} \pm δ\cos(ψ) - ε_{A}
\tilde{ω}^0_{\pm} \equiv ω_{σ}^{0}_{σ} = ω_{S} \pm δ\cos(ψ) - ε_{A}
+ \frac{\abs{κ}
πn_{T}}{2c\cos(ψ)}Δ.
\end{equation}
@ -1304,8 +1312,8 @@ Finally we arrive at
\label{eq:118}
\begin{aligned}
χ(t,s) &= χ_{0}Θ(s)
_{γ,σ,σ'}\eu^{{-\iu\bqty{\tilde{ω}_{σ}t -
\tilde{ω}_{σ'}s + ω_{γ}(t-s)} -
_{γ,σ,σ'}\eu^{{-\iu\bqty{\tilde{ω}^0_{σ}t -
\tilde{ω}^0_{σ'}s + ω_{γ}(t-s)} -
λ_{γ}(t-s)}}O_{σ,{γ}}O^{-1}_{γ,σ'}\frac{σ σ' \eu^{\iu σ
ψ}}{\cos(ψ)}\\
&= θ(s) χ_{1}(t-s) + χ_{2}(t,s).
@ -1320,11 +1328,11 @@ The stationary and non-stationary susceptibilities work out to be
\begin{align}
\label{eq:121}
χ_{1}(t) &= χ_{0}
_{γ,σ}\eu^{{-\bqty{\iu\pqty{\tilde{ω}_{σ} + ω_{γ}} +
_{γ,σ}\eu^{{-\bqty{\iu\pqty{\tilde{ω}^0_{σ} + ω_{γ}} +
λ_{γ}}t}}O_{σ,{γ}}O^{-1}_{γ,σ}\frac{\eu^{\iu σ
ψ}}{\cos(ψ)}\\
χ_{2}(t,s) &= -χ_{0}_{γσ} \eu^{-\bqty{\iu\pqty{\tilde{ω}_{σ} +
ω_{γ}} + λ_{γ}}t} \eu^{\bqty{\iu\pqty{\tilde{ω}_{\bar{σ}} +
χ_{2}(t,s) &= -χ_{0}_{γσ} \eu^{-\bqty{\iu\pqty{\tilde{ω}^0_{σ} +
ω_{γ}} + λ_{γ}}t} \eu^{\bqty{\iu\pqty{\tilde{ω}^0_{\bar{σ}} +
ω_{γ}} + λ_{γ}}s} O_{σ,{γ}}O^{-1}_{γ,\bar{σ}},
\end{align}
where \(\bar{σ}=-σ\). As \(V^{0}_{mn}\) decomposes into two blocks,
@ -1344,8 +1352,8 @@ coherent input beam with frequency \(ω\) in the limit of
\(t\gg λ_{γ}\)
\begin{equation}
\label{eq:123}
_{0}^{t}\eu^{-\iu ω s} χ(t-s)\dd{s} = \eu^{\iu ω t} χ_{0}_{σγ}\frac{O_{σ,{γ}}O^{-1}_{γ,σ}}{\iu\pqty{\tilde{ω}_{σ} + ω_{γ}} +
λ_{γ}}\frac{\eu^{\iu σψ}}{\cos(ψ)}\equiv \eu^{-\iu ω t}T_{S}(ω).
_{0}^{t}\eu^{-\iu ω s} χ(t-s)\dd{s} = \eu^{\iu ω t} χ_{0}_{σγ}\frac{O_{σ,{γ}}O^{-1}_{γ,σ}}{\iu\pqty{\tilde{ω}^0_{σ} + ω_{γ}} +
λ_{γ}}\frac{\eu^{\iu σψ}}{\cos(ψ)}\equiv \eu^{-\iu ω t}F_{S}(ω).
\end{equation}
Both the magnetic and the electric field are proportional to
@ -1354,21 +1362,30 @@ vector, e.g. the intensity, averaged over the oscillation period of
the input light becomes
\begin{equation}
\label{eq:128}
\bar{I} = I_{0}\pqty{1-2\Re{T_{S}(ω)} + \abs{T_{S}(ω)}^{2}} \approx
I_{0}\pqty{1-2\Re{T_{S}(ω)}} ,
\bar{I} = I_{0}\pqty{1-2\Re{F_{S}(ω)} + \abs{F_{S}(ω)}^{2}} \approx
I_{0}\pqty{1-2\Re{F_{S}(ω)}} ,
\end{equation}
where we have used \(b_{\inputf}=b_{0}\eu^{-\iu ωt}\).
For \(Δ=0\) we have
\begin{equation}
\label{eq:130}
\Re{T_{S}(ω)} = χ_{0}_{σγ}\frac{λ_{γ}\abs{O_{σ,γ}}^{2}}{\pqty{\tilde{ω}_{σ} + ω_{γ}}^{2} +
\Re{F_{S}(ω)} = χ_{0}_{σγ}\frac{λ_{γ}\abs{O_{σ,γ}}^{2}}{\pqty{\tilde{ω}^0_{σ} + ω_{γ}}^{2} +
λ_{γ}^{2}},
\end{equation}
whereas \(Δ\neq 0\) will very slightly shift the peaks and influence
the peak heights. We also see, that we only have a good signal on the
states that have some overlap with the small loop.
whereas \(Δ\neq 0\) will very slightly shift the peak locations and
influence the peak heights. We also see, that we only have a good
signal on the states that have some overlap with the small loop. The
locations of the peaks (dips in the transmission) are the eigenenrgies
\(ω_{γ}\) of the target Hamiltonian \(H^{T}\) relative to the
eigenenrgies of the unmodulated system and the drive detunings
\(\tilde{ω}^0_{σ}=ω^{0}_{σ}-ε_{σ}\). Wheras the \(ω^{0}_{σ}\) define
the ``zero'' of energy, the shifts by \(ε_{σ}\) can be interpreted as
an effect similar to the AC stark shift that arises due to the drive
detuning. Another effect of the drive, namely persistent oscillations
of the output intensity, is not observed here, as we don't couple the
\(σ=\pm\) states with the drive. Finally, the peak heights and widths are
controlled by the loss rates \(λ_{γ}\).
\subsection{Steady-state Transmission on the Big Loop}
\label{sec:steady-state-transm}