mirror of
https://github.com/vale981/notes_io_loop
synced 2025-03-04 17:11:40 -05:00
update notes and graphics
This commit is contained in:
parent
14e93dbf8b
commit
2dda893d95
5 changed files with 1765 additions and 857 deletions
Binary file not shown.
|
@ -50,7 +50,7 @@
|
|||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.84005445)%
|
||||
\begin{picture}(1,0.84005373)%
|
||||
\lineheight{1}%
|
||||
\setlength\tabcolsep{0pt}%
|
||||
\put(0,0){\includegraphics[width=\unitlength,page=1]{walker_setup.pdf}}%
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 25 KiB After Width: | Height: | Size: 35 KiB |
File diff suppressed because it is too large
Load diff
Before Width: | Height: | Size: 425 KiB After Width: | Height: | Size: 507 KiB |
|
@ -68,7 +68,7 @@ length of the cavity/resonator that hosts the electric field. The
|
|||
modes have wave numbers \(k_{β} = 2πβ/L_{A}\) for \(β \in \ZZ\) and
|
||||
frequencies \(ω_{k_β} = c \abs{k_{β}}/n_{A}\), where \(n_{A}\) is the
|
||||
refractive index inside the cavity. For simplicity we set \(\hbar
|
||||
= 1\) such that time is measured in units of inverse energy.
|
||||
= 1\) such that energy is measured in units of frequency.
|
||||
|
||||
\subsection{Transformations and Rotating Frames}
|
||||
\label{sec:rotating-frames}
|
||||
|
@ -145,14 +145,16 @@ mode within that resonator. The eigenmodes \(c_{m}\) of the coupled
|
|||
oscillators obeying \(H_{0}\) are related to the bare modes
|
||||
\(α_{j,α}\) by \cref{eq:43}. The frame in which the equations of
|
||||
motion for the modes reflects the target Hamiltonian
|
||||
\(\tilde{H}_{A}'\) are reached through a transformation into a
|
||||
\(H^{T}\) are reached through a transformation into a
|
||||
rotating frame in \cref{eq:12} leading to the \(h_{n}\) modes. The
|
||||
resulting equations of motion for the \(h_{n}\) can be decoupled by
|
||||
the transformation \(O_{mγ}\) giving the eigenmodes of the target
|
||||
Hamiltonian \(d_{γ}\) including damping.
|
||||
|
||||
It is important to keep in mind that the actual observables are the
|
||||
\(α_{β} = α_{i_{0},β}\) which couple to the transmission line.
|
||||
\(α_{β} = α_{i_{0},β}\) which couple to the transmission line, wheras
|
||||
the modes in the rotating frame \(h_{n}\) correspond to the amplitudes
|
||||
that evolve according to the target Hamiltonian.
|
||||
|
||||
Let us list the relation between the \(a\), \(c\), \(h\) and \(d\) operators
|
||||
for later reference
|
||||
|
@ -841,7 +843,8 @@ where \(X=S,B\).
|
|||
modulation through the EOM to give us an effectively
|
||||
time-independent target Hamiltonian \(H^{T}_{mn}\). Diagonalizing
|
||||
this Hamiltonian gives us the energies \(ω_{λ}\) that we can
|
||||
detect when measuring the transmission (Green).}
|
||||
detect when measuring the transmission (Green). Damping terms have
|
||||
been left out of the picture for simplicity.}
|
||||
\end{figure}
|
||||
These loops are coupled to each other with amplitude \(δ\eu^{\iu ϕ}\) which can
|
||||
possibly contain a phase due to the choice of the coordinate
|
||||
|
@ -1065,7 +1068,7 @@ To account for this, we modify \cref{eq:51} to
|
|||
\begin{aligned}
|
||||
H_{A}= ω_{s}a_{S,0}^†a_{S,0} &+ ∑_{n=-N}^{N} ω_{n}^{B}a_{B,n}^†a_{B,n} + δ \pqty{\eu^{\iu
|
||||
ϕ}a_{B,0}^†a_{S,0} + \eu^{-\iu ϕ}a_{S,0}^†a_{B,0}} + ∑_{mn}J_{mn}(t) a_{B,m}^†a_{B,n}
|
||||
\\&- \iu a_{S,0}^†a_{S,0}η_{S} a^†a - \iu \pqty{η_{S}+2Δδ} ∑_{n}a_{B,n}^†a_{B,n}
|
||||
\\&- \iu η_{S}a_{S,0}^†a_{S,0} - \iu \pqty{η_{S}+2Δδ} ∑_{n}a_{B,n}^†a_{B,n}
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
with the damping rates \(η_{S}\) and the damping asymmetry
|
||||
|
@ -1113,6 +1116,8 @@ With this, we have for \(m=\pm,-N,-N+1,\ldots,-1,1,2,\ldots,N\)
|
|||
\frac{η_{S}+ η_{B}}{2}.
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
Note that the eigenenergies of the \(\pm\) modes are slightly shifted.
|
||||
|
||||
Next, we compute the transformation of the interaction
|
||||
\(T^{-1}VT\) (see \cref{eq:74}) and find
|
||||
\begin{equation}
|
||||
|
@ -1128,6 +1133,9 @@ Next, we compute the transformation of the interaction
|
|||
Evidently, the matrix \(T^{-1}VT\) is not hermitian except in the
|
||||
limit \(Δ\to 0\).
|
||||
|
||||
In all of the above one can set \(\cos(ψ)=1\) to only account for
|
||||
\(Δ\) in leading order.
|
||||
|
||||
|
||||
\subsection{Rotating-Wave Interaction}
|
||||
\label{sec:rotat-wave-inter}
|
||||
|
@ -1149,14 +1157,14 @@ Let us now assume that the voltage modulation takes the form of
|
|||
\pqty{\hat{ω}_{j}+\hat{δ}_{j}}t}\eu^{-\iu \varphi_{j}}}.
|
||||
\end{equation}
|
||||
|
||||
Transforming into the rotating frame of the \(\tilde{c}_{m}\) (see
|
||||
Transforming into the rotating frame of the \({h}_{m}\) (see
|
||||
\cref{eq:66}), we have
|
||||
\begin{equation}
|
||||
\label{eq:105}
|
||||
\tilde{V}_{mn}=-\iu ∑_{j}\hat{V}_{mn}\hat{f}_{i}\bqty{\eu^{i \pqty{\hat{ω_{j}} +\hat{δ}_{j} -
|
||||
\pqty{ω^{0}_{n}-ω^{0}_{m}}}t} \eu^{\iu \varphi_{j}}
|
||||
\pqty{ω^{0}_{n}-ω^{0}_{m} + ε_{m}-ε_{n}}}t} \eu^{\iu \varphi_{j}}
|
||||
- \eu^{-i \pqty{\hat{ω_{j}} +
|
||||
\hat{δ}_{j}+\pqty{ω^{0}_{n}-ω^{0}_{m}}}t} \eu^{-\iu \varphi_{j}}}.
|
||||
\hat{δ}_{j}+\pqty{ω^{0}_{n}-ω^{0}_{m} + ε_{m}-ε_{n}}}t} \eu^{-\iu \varphi_{j}}}.
|
||||
\end{equation}
|
||||
|
||||
As discussed in \cref{sec:choice-hybridization}, we want to couple the
|
||||
|
@ -1294,7 +1302,7 @@ To calculate the susceptibility (see \cref{eq:87}), we evaluate
|
|||
with
|
||||
\begin{equation}
|
||||
\label{eq:117}
|
||||
\tilde{ω}_{\pm} \equiv ω_{σ}^{0}-ε_{σ} = ω_{S} \pm δ\cos(ψ) - ε_{A}
|
||||
\tilde{ω}^0_{\pm} \equiv ω_{σ}^{0}-ε_{σ} = ω_{S} \pm δ\cos(ψ) - ε_{A}
|
||||
+ \frac{\abs{κ}
|
||||
πn_{T}}{2c\cos(ψ)}Δ.
|
||||
\end{equation}
|
||||
|
@ -1304,8 +1312,8 @@ Finally we arrive at
|
|||
\label{eq:118}
|
||||
\begin{aligned}
|
||||
χ(t,s) &= χ_{0}Θ(s)
|
||||
∑_{γ,σ,σ'}\eu^{{-\iu\bqty{\tilde{ω}_{σ}t -
|
||||
\tilde{ω}_{σ'}s + ω_{γ}(t-s)} -
|
||||
∑_{γ,σ,σ'}\eu^{{-\iu\bqty{\tilde{ω}^0_{σ}t -
|
||||
\tilde{ω}^0_{σ'}s + ω_{γ}(t-s)} -
|
||||
λ_{γ}(t-s)}}O_{σ,{γ}}O^{-1}_{γ,σ'}\frac{σ σ' \eu^{\iu σ
|
||||
ψ}}{\cos(ψ)}\\
|
||||
&= θ(s) χ_{1}(t-s) + χ_{2}(t,s).
|
||||
|
@ -1320,11 +1328,11 @@ The stationary and non-stationary susceptibilities work out to be
|
|||
\begin{align}
|
||||
\label{eq:121}
|
||||
χ_{1}(t) &= χ_{0}
|
||||
∑_{γ,σ}\eu^{{-\bqty{\iu\pqty{\tilde{ω}_{σ} + ω_{γ}} +
|
||||
∑_{γ,σ}\eu^{{-\bqty{\iu\pqty{\tilde{ω}^0_{σ} + ω_{γ}} +
|
||||
λ_{γ}}t}}O_{σ,{γ}}O^{-1}_{γ,σ}\frac{\eu^{\iu σ
|
||||
ψ}}{\cos(ψ)}\\
|
||||
χ_{2}(t,s) &= -χ_{0} ∑_{γσ} \eu^{-\bqty{\iu\pqty{\tilde{ω}_{σ} +
|
||||
ω_{γ}} + λ_{γ}}t} \eu^{\bqty{\iu\pqty{\tilde{ω}_{\bar{σ}} +
|
||||
χ_{2}(t,s) &= -χ_{0} ∑_{γσ} \eu^{-\bqty{\iu\pqty{\tilde{ω}^0_{σ} +
|
||||
ω_{γ}} + λ_{γ}}t} \eu^{\bqty{\iu\pqty{\tilde{ω}^0_{\bar{σ}} +
|
||||
ω_{γ}} + λ_{γ}}s} O_{σ,{γ}}O^{-1}_{γ,\bar{σ}},
|
||||
\end{align}
|
||||
where \(\bar{σ}=-σ\). As \(V^{0}_{mn}\) decomposes into two blocks,
|
||||
|
@ -1344,8 +1352,8 @@ coherent input beam with frequency \(ω\) in the limit of
|
|||
\(t\gg λ_{γ}\)
|
||||
\begin{equation}
|
||||
\label{eq:123}
|
||||
∫_{0}^{t}\eu^{-\iu ω s} χ(t-s)\dd{s} = \eu^{\iu ω t} χ_{0} ∑_{σγ}\frac{O_{σ,{γ}}O^{-1}_{γ,σ}}{\iu\pqty{\tilde{ω}_{σ} + ω_{γ}-ω} +
|
||||
λ_{γ}}\frac{\eu^{\iu σψ}}{\cos(ψ)}\equiv \eu^{-\iu ω t}T_{S}(ω).
|
||||
∫_{0}^{t}\eu^{-\iu ω s} χ(t-s)\dd{s} = \eu^{\iu ω t} χ_{0} ∑_{σγ}\frac{O_{σ,{γ}}O^{-1}_{γ,σ}}{\iu\pqty{\tilde{ω}^0_{σ} + ω_{γ}-ω} +
|
||||
λ_{γ}}\frac{\eu^{\iu σψ}}{\cos(ψ)}\equiv \eu^{-\iu ω t}F_{S}(ω).
|
||||
\end{equation}
|
||||
|
||||
Both the magnetic and the electric field are proportional to
|
||||
|
@ -1354,21 +1362,30 @@ vector, e.g. the intensity, averaged over the oscillation period of
|
|||
the input light becomes
|
||||
\begin{equation}
|
||||
\label{eq:128}
|
||||
\bar{I} = I_{0}\pqty{1-2\Re{T_{S}(ω)} + \abs{T_{S}(ω)}^{2}} \approx
|
||||
I_{0}\pqty{1-2\Re{T_{S}(ω)}} ,
|
||||
\bar{I} = I_{0}\pqty{1-2\Re{F_{S}(ω)} + \abs{F_{S}(ω)}^{2}} \approx
|
||||
I_{0}\pqty{1-2\Re{F_{S}(ω)}} ,
|
||||
\end{equation}
|
||||
where we have used \(b_{\inputf}=b_{0}\eu^{-\iu ωt}\).
|
||||
|
||||
For \(Δ=0\) we have
|
||||
|
||||
\begin{equation}
|
||||
\label{eq:130}
|
||||
\Re{T_{S}(ω)} = χ_{0} ∑_{σγ}\frac{λ_{γ}\abs{O_{σ,γ}}^{2}}{\pqty{\tilde{ω}_{σ} + ω_{γ}-ω}^{2} +
|
||||
\Re{F_{S}(ω)} = χ_{0} ∑_{σγ}\frac{λ_{γ}\abs{O_{σ,γ}}^{2}}{\pqty{\tilde{ω}^0_{σ} + ω_{γ}-ω}^{2} +
|
||||
λ_{γ}^{2}},
|
||||
\end{equation}
|
||||
whereas \(Δ\neq 0\) will very slightly shift the peaks and influence
|
||||
the peak heights. We also see, that we only have a good signal on the
|
||||
states that have some overlap with the small loop.
|
||||
whereas \(Δ\neq 0\) will very slightly shift the peak locations and
|
||||
influence the peak heights. We also see, that we only have a good
|
||||
signal on the states that have some overlap with the small loop. The
|
||||
locations of the peaks (dips in the transmission) are the eigenenrgies
|
||||
\(ω_{γ}\) of the target Hamiltonian \(H^{T}\) relative to the
|
||||
eigenenrgies of the unmodulated system and the drive detunings
|
||||
\(\tilde{ω}^0_{σ}=ω^{0}_{σ}-ε_{σ}\). Wheras the \(ω^{0}_{σ}\) define
|
||||
the ``zero'' of energy, the shifts by \(ε_{σ}\) can be interpreted as
|
||||
an effect similar to the AC stark shift that arises due to the drive
|
||||
detuning. Another effect of the drive, namely persistent oscillations
|
||||
of the output intensity, is not observed here, as we don't couple the
|
||||
\(σ=\pm\) states with the drive. Finally, the peak heights and widths are
|
||||
controlled by the loss rates \(λ_{γ}\).
|
||||
|
||||
\subsection{Steady-state Transmission on the Big Loop}
|
||||
\label{sec:steady-state-transm}
|
||||
|
|
Loading…
Add table
Reference in a new issue