mirror of
https://github.com/vale981/master-thesis
synced 2025-03-06 18:41:38 -05:00
359 lines
13 KiB
TeX
359 lines
13 KiB
TeX
\documentclass[fontsize=12pt,paper=a4,open=any,
|
|
,twoside=false,toc=listof,toc=bibliography,
|
|
captions=nooneline,captions=tableabove,english,DIV=16,numbers=noenddot,final]{scrartcl}
|
|
|
|
\usepackage{../hirostyle}
|
|
\addbibresource{../references.bib}
|
|
\synctex=1
|
|
\title{Calculating heat flows with HOPS}
|
|
\author{Valentin Boettcher}
|
|
\date{\today}
|
|
\begin{document}
|
|
\maketitle
|
|
\tableofcontents
|
|
|
|
\section{One Bath}
|
|
|
|
\subsection{Linear NMQSD, Zero Temperature}
|
|
As in~\cite{Hartmann2017Dec} we choose
|
|
\begin{equation}
|
|
\label{eq:totalH}
|
|
H = H_S + \underbrace{LB^\dagger + L^\dagger B}_{H_I} + H_B
|
|
\end{equation}
|
|
with the system hamiltonian \(H_S\), the bath hamiltonian
|
|
\begin{equation}
|
|
\label{eq:bathh}
|
|
H_B = \sum_\lambda \omega_\lambda a^\dag a,
|
|
\end{equation}
|
|
the bath coupling system operator \(L\) and the bath coupling bath
|
|
operator
|
|
\begin{equation}
|
|
\label{eq:bop}
|
|
B=\sum_{\lambda} g_{\lambda} a_{\lambda}
|
|
\end{equation}
|
|
which define the interaction hamiltonian \(H_I\).
|
|
|
|
We define the heat flow out of the system as in~\cite{Kato2015Aug}
|
|
through
|
|
\begin{equation}
|
|
\label{eq:heatflowdef}
|
|
J = - \dv{\ev{H_B}}{t}.
|
|
\end{equation}
|
|
Working, for now, in the Schr\"odinger picture the Ehrenfest theorem
|
|
can be employed to find
|
|
\begin{equation}
|
|
\label{eq:ehrenfest}
|
|
\i\partial_t\ev{H_B} = \ev{[H_B,H]} = \ev{[H_B,H_I]}.
|
|
\end{equation}
|
|
Thus, we need to calculate
|
|
\begin{eqnarray}
|
|
\label{eq:calccomm}
|
|
\begin{aligned}
|
|
[H_B,H_I] &= [H_B, LB^\dag + L^\dag B] \\
|
|
&= L[H_B, B^\dag ] + L^\dag [H_B, B] \\
|
|
&= L[H_B, B^\dag ] - \hc.
|
|
\end{aligned}
|
|
\end{eqnarray}
|
|
This checks out as the commutator has to be anti-hermitian due to
|
|
\cref{eq:ehrenfest}.
|
|
Using \([H_B, B^\dag ]=\sum_\lambda \omega_\lambda g^\ast_\lambda
|
|
a^\dag_\lambda\) it follows that
|
|
\begin{equation}
|
|
\label{eq:expcomm}
|
|
\begin{aligned}
|
|
\ev{[H_B,H_I]} &= \sum_\lambda \omega_\lambda g^\ast_\lambda
|
|
\ev{La^\dag_\lambda} - \cc
|
|
= \sum_\lambda \omega_\lambda g^\ast_\lambda
|
|
\ev{La^\dag_\lambda \eu^{\i \omega t}}_I - \cc\\
|
|
&= \frac{1}{\i}\ev{L\partial_t{\sum_\lambda
|
|
g^\ast_\lambda a^\dag_\lambda \eu^{\i \omega t}}}_I - \cc
|
|
=\frac{1}{\i}\qty(\ev{L\dot{B}^\dag}_I + \cc)
|
|
\end{aligned}
|
|
\end{equation}
|
|
where we switched to the interaction picture with respect to \(H_B\)
|
|
in keeping with the standard NMQSD formalism.
|
|
In essence this is just the Heisenberg equation for \(H_I\). The
|
|
expression for \(J\) follows
|
|
\begin{equation}
|
|
\label{eq:final_flow}
|
|
J(t) = \ev{L^\dag\partial_t B(t) + L\partial_t B^\dag(t)}_I.
|
|
\end{equation}
|
|
|
|
From this point on, we will assume the interaction picture and drop the
|
|
\(I\) subscript.
|
|
|
|
The two summands yield different expressions in terms of the NMQSD.
|
|
For use with HOPS with the final goal of utilizing the auxiliary
|
|
states the expression \(\ev{L^\dag\partial_t B(t)}\) should be
|
|
evaluated.
|
|
|
|
We calculate
|
|
\begin{equation}
|
|
\label{eq:interactev}
|
|
\ev{L^\dag\partial_t B(t)}=\ev{L^\dag\partial_t B(t)}{\psi(t)} =
|
|
\int \braket{\psi(t)}{z}\mel{z}{L^\dag\partial_tB(t)}{\psi(t)}\frac{\dd[2]{z}}{\pi^N},
|
|
\end{equation}
|
|
where \(N\) is the total number of environment oscillators and
|
|
\(z=\qty(z_{\lambda_1}, z_{\lambda_2}, \ldots)\).
|
|
To that end,
|
|
\begin{equation}
|
|
\label{eq:nmqsdficate}
|
|
\begin{aligned}
|
|
\mel{z}{\partial_tB(t)}{\psi(t)} &= \sum_\lambda g_\lambda
|
|
\qty(\partial_t \eu^{-\i\omega_\lambda
|
|
t})\partial_{z^\ast_\lambda}\ket{\psi(z^\ast,t)} \\
|
|
&= \int_0^t \sum_\lambda g_\lambda
|
|
\qty(\partial_t \eu^{-\i\omega_\lambda
|
|
t})\pdv{\eta_s^\ast}{z^\ast_\lambda}\fdv{\ket{\psi(z^\ast,t)}}{\eta^\ast_s}\dd{s}\\
|
|
&= -\i\int_0^t\dot{\alpha}(t-s)\fdv{\ket{\psi(z^\ast,t)}}{\eta^\ast_s}\dd{s},
|
|
\end{aligned}
|
|
\end{equation}
|
|
where \(\eta^\ast_t\equiv -\i \sum_\lambda g^\ast_\lambda
|
|
z^\ast_\lambda \eu^{\i\omega_\lambda t}\).
|
|
With this we can write
|
|
\begin{equation}
|
|
\label{eq:steptoproc}
|
|
\ev{L^\dag\partial_t B(t)} = -\i \mathcal{M}_{\eta^\ast}\bra{\psi(\eta,
|
|
t)}L^\dag\int_0^t\dd{s} \dot{\alpha}(t-s)\fdv{\eta^\ast_s} \ket{\psi(\eta^\ast,t)}.
|
|
\end{equation}
|
|
Defining
|
|
\begin{equation}
|
|
\label{eq:defdop}
|
|
D_t = \int_0^t\dd{s} \alpha(t-s)\fdv{\eta^\ast_s}
|
|
\end{equation}
|
|
as in~\cite{Suess2014Oct} we can write
|
|
\begin{equation}
|
|
\label{eq:final_flow_nmqsd}
|
|
J(t) = -\i \mathcal{M}_{\eta^\ast}\bra{\psi(\eta,
|
|
t)}L^\dag\dot{D}_t\ket{\psi(\eta^\ast,t)} + \cc,
|
|
\end{equation}
|
|
where we've used that the integral in \(D_t\) can be expanded over the
|
|
whole real axis. If we assume \(\alpha = \exp(-w t)\) then
|
|
\begin{equation}
|
|
\label{eq:hopsj}
|
|
J(t) = \i \mathcal{M}_{\eta^\ast}\bra{\psi^{(0)}(\eta,
|
|
t)}wL^\dag\ket{\psi^{(1)}(\eta^\ast,t)} + \cc.,
|
|
\end{equation}
|
|
where \(\ket{\psi^{(1)}(\eta^\ast,t)}\) is the first HOPS hierarchy
|
|
state. This can be generalized to any BCF that is a sum of exponentials.
|
|
|
|
Interestingly one finds that
|
|
\begin{equation}
|
|
\label{eq:alternative}
|
|
\ev{L\partial_t B^\dag(t)} = \i\int\frac{\dd[2]{z}}{\pi^N}
|
|
\dot{\eta}_t^\ast \mel{\psi(\eta,t)}{L}{\psi(\eta^\ast,t)}.
|
|
\end{equation}
|
|
However, this seems numerically problematic because \(\eta^\ast\) is not
|
|
differentiable in general. The previous expression has the advantage
|
|
that we utilize the first hierarchy states that are already being
|
|
calculated as a byproduct.
|
|
|
|
In the language of~\cite{Hartmann2021Aug} we can generalize to
|
|
\(\alpha(t) = \sum_i G_i \eu^{-W_i t}\) and thus
|
|
\begin{equation}
|
|
\label{eq:hopsflowrich}
|
|
J(t) = \sum_\mu\frac{G_\mu W_\mu}{\bar{g}_\mu} \i\mathcal{M}_{\eta^\ast}\bra{\psi^{(0)}(\eta,
|
|
t)}L^\dag\ket{\psi^{\vb{e}_\mu}(\eta^\ast,t)} + \cc,
|
|
\end{equation}
|
|
where \(\psi^{\vb{e}_\mu}\) is the \(\mu\)-th state of the first
|
|
hierarchy and \(\bar{g}_\mu\) is an arbitrary scaling introduced in
|
|
the definition of the hierarchy in~\cite{Hartmann2021Aug} to help with
|
|
the scaling of the norm.
|
|
|
|
|
|
|
|
\subsection{Nonlinear NMQSD, Zero Temperature}
|
|
\label{sec:nonlin}
|
|
In the spirit of the usual derivation of the nonlinear NMQSD we write
|
|
\begin{equation}
|
|
\label{eq:newb}
|
|
\begin{aligned}
|
|
\ev{L^\dag\dot{B(t)}} &= \int \frac{\dd[2]{z}}{\pi^N} \eu^{-\abs{z}^2}
|
|
\braket{\psi}{z}\!\braket{z}{\psi}
|
|
\frac{\braket{\psi(t)}{z}\!\mel{z}{L^\dag\dot{B(t)}}{\psi(t)}}{\braket{\psi}{z}\!\braket{z}{\psi}}
|
|
\\
|
|
&= \int \frac{\dd[2]{z}}{\pi^N} \eu^{-\abs{z}^2}
|
|
\frac{\mel{z(t)}{L^\dag\dot{B(t)}}{\psi(t)}}{\braket{\psi}{z(t)}\!\braket{z(t)}{\psi}},
|
|
\end{aligned}
|
|
\end{equation}
|
|
where \(z_{\lambda}^{*}(t)=z_{\lambda}^{*}+\i g_{\lambda} \int_{0}^{t}
|
|
\dd{s} \eu^{-\i \omega_{\lambda} s}\ev{L^\dagger}_{s}\).
|
|
We find that next steps are the same as in \cref{sec:nonlin} by noting
|
|
\begin{equation}
|
|
\label{eq:deriv_trick}
|
|
\eval{\partial_{z^\ast_\lambda}}_{z^\ast=z_\lambda^\ast(t)} =
|
|
\int_0^t\dd{s}\eval{\pdv{\eta^\ast}{z^\ast_\lambda}}_{z^\ast=z^\ast_\lambda(t)}
|
|
\fdv{}{\eta^\ast_s(z^\ast=z^\ast(t))} =
|
|
\int_0^t\dd{s}\eval{\pdv{\eta^\ast}{z^\ast_\lambda}}_{z^\ast=0}
|
|
\fdv{}{\eta^\ast_s(z^\ast=z^\ast(t))},
|
|
\end{equation}
|
|
which does alter the definition of \(D_t\) but results in the same
|
|
HOPS equations.
|
|
The shifted process \(\tilde{\eta}^\ast=
|
|
\eta^\ast(z^\ast(t),t)=\eta^\ast(t) +
|
|
\int_0^t\dd{s}\alpha^\ast(t-s)\ev{L^\dag}_{\psi_s}\) appears directly
|
|
in the NMQSD equation but results only in a slight change in the
|
|
functional derivative. Note however that
|
|
\begin{equation}
|
|
\label{eq:fdvclarification}
|
|
\fdv{}{\eta^\ast_s(z^\ast=z^\ast(t))} \neq \fdv{}{\tilde{\eta}^\ast_s}
|
|
\end{equation}
|
|
which is not problematic as we have (implicit in~\cite{Diosi1998Mar})
|
|
\begin{equation}
|
|
\label{eq:fdvhops}
|
|
\fdv{}{\eta^\ast_s(z^\ast=z^\ast(t))} \ket{\psi(z^\ast)} = \fdv{}{\eta^\ast_s}\ket{\psi(z^\ast(t, z^\ast_0), t)}
|
|
\end{equation}
|
|
so that the usual HOPS hierarchy follows. Note \(z^\ast_0 = z^\ast(0)\).
|
|
|
|
Therefore,
|
|
\begin{equation}
|
|
\label{eq:newbcontin}
|
|
J(t) =
|
|
-\i
|
|
\mathcal{M}_{\tilde{\eta}^\ast}\frac{\mel{\psi(\tilde{\eta},t)}{L^\dag\dot{\tilde{D}}_t}{\psi(\tilde{\eta}^\ast,t)}}{\braket{\psi(\tilde{\eta},t)}{\psi(\tilde{\eta}^\ast,t)}}
|
|
+ \cc,
|
|
\end{equation}
|
|
where the dependence on \(\tilde{\eta}\) is symbolic and to be
|
|
understood in the context of \cref{eq:fdvhops}.
|
|
|
|
Again we express the result in the language of~\cite{Hartmann2021Aug}
|
|
to obtain
|
|
\begin{equation}
|
|
\label{eq:hopsflowrich}
|
|
J(t) = \sum_\mu\frac{G_\mu W_\mu}{\bar{g}_\mu}
|
|
\i\mathcal{M}_{\eta^\ast}\frac{\bra{\psi^{(0)}(\eta,
|
|
t)}L^\dag\ket{\psi^{\vb{e}_\mu}(\eta^\ast,t)}}{\bra{\psi^{(0)}(\eta,
|
|
t)}\ket{\psi^{0}(\eta^\ast,t)}} + \cc.
|
|
\end{equation}
|
|
|
|
\subsection{Linear Theory, Finite Temperature}
|
|
The finite temperature case needs some additional considerations as
|
|
the previous sections dealt explicitly with mean values in a pure
|
|
state. The Ehrenfest theorem still holds in mixed states, but we would
|
|
like to recover the usual pure state zero temperature formalism. There
|
|
are multiple methods for dealing with a thermal initial such as the
|
|
thermofield method (see~\cite{Diosi1998Mar}), but because the results
|
|
discussed here are to be applied with the HOPS method we shall use the
|
|
method described in~\cite{Hartmann2017Dec}.
|
|
|
|
The shift operator
|
|
\begin{equation}
|
|
\label{eq:shiftop}
|
|
\vb{D}(y) = \bigotimes_\lambda \eu^{y_\lambda a_\lambda^\dag-y^\ast_\lambda a_\lambda}
|
|
\end{equation}
|
|
the ground state of the environment into an arbitrary
|
|
coherent state
|
|
\begin{equation}
|
|
\label{eq:shiftwork}
|
|
\vb{D}(y)\ket{0} = \ket{y}
|
|
\end{equation}
|
|
where \(y=(y_1,y_2,\ldots)\) as usual.
|
|
|
|
This allows us to write the density matrix of the system with a
|
|
thermal initial bath as
|
|
\begin{equation}
|
|
\label{eq:shiftbath}
|
|
\rho =
|
|
\prod_\lambda\qty(\int\dd[2]{y_\lambda}
|
|
\frac{\eu^{-\abs{y_\lambda}^2\bar{n}_\lambda}}{\pi\bar{n}_\lambda})
|
|
U(t)\vb{D}(y)\ketbra{\psi}\otimes\ketbra{0}\vb{D}(y)^\dag U(t)^\dag.
|
|
\end{equation}
|
|
The usual step is now to insert \(\id =\vb{D}(y)\vb{D}^\dag(y)\) to
|
|
arrive at a new time translation operator
|
|
\begin{equation}
|
|
\label{eq:utilde}
|
|
\tilde{U}(t) = \vb{D}^\dag(y)U(t)\vb{D}(y)
|
|
\end{equation}
|
|
and to interpret the integral in \cref{eq:shiftbath} in a monte-carlo
|
|
sense which leads to a stochastic contribution to the system Hamiltonian
|
|
\begin{equation}
|
|
\label{eq:thermalh}
|
|
H_{\mathrm{sys}}^{\mathrm{shift}}=L \xi^{*}(t)+L^{\dagger} \xi(t)
|
|
\end{equation}
|
|
with the stochastic process
|
|
\begin{equation}
|
|
\label{eq:xiproc}
|
|
\xi(t):=\sum_{\lambda} g_{\lambda} y_{\lambda} \eu^{-\mathrm{i} \omega_{\lambda} t}
|
|
\end{equation}
|
|
with corresponding moments \(\mathcal{M}(\xi(t))=0=\mathcal{M}(\xi(t) \xi(s))\) and
|
|
\[
|
|
\mathcal{M}\left(\xi(t) \xi^{*}(s)\right)=\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d} \omega \bar{n}(\beta \omega) J(\omega) e^{-\mathrm{i} \omega(t-s)}.
|
|
\]
|
|
Remember that we want to calculate
|
|
\begin{equation}
|
|
\label{eq:whatreallymatters}
|
|
\begin{aligned}
|
|
\ev{L^\dag\dot{B}(t)} &= \tr[L^\dag\dot{B}(t)\rho(t)] \\
|
|
&=\prod_\lambda\qty(\int\dd[2]{y_\lambda}
|
|
\frac{\eu^{-\abs{y_\lambda}^2\bar{n}_\lambda}}{\pi\bar{n}_\lambda})\tr[L^\dag\dot{B}(t)
|
|
U(t)\vb{D}(y)\ketbra{\psi}\otimes\ketbra{0}\vb{D}(y)^\dag U(t)^\dag] .
|
|
\end{aligned}
|
|
\end{equation}
|
|
|
|
To recover the zero temperature formulation of this expectation value we
|
|
again insert a \(\id\), but have to commute \(\vb{D}(y)^\dag\) past
|
|
\(\dot{B}(t)\). This leads to the expression
|
|
\begin{equation}
|
|
\label{eq:pureagain}
|
|
\begin{aligned}
|
|
\ev{L^\dag\dot{B}(t)} &=\prod_\lambda\qty(\int\dd[2]{y_\lambda}
|
|
\frac{\eu^{-\abs{y_\lambda}^2\bar{n}_\lambda}}{\pi\bar{n}_\lambda})\\
|
|
&\qquad\times\tr[L^\dag(\dot{B}(t) + \dot{\xi}(t))
|
|
\vb{D}^\dag(y) U(t)\vb{D}(y)\ketbra{\psi}\otimes\ketbra{0}\vb{D}^\dag(y)U(t)^\dag\vb{D}(y)] \\
|
|
&=\prod_\lambda\qty(\int\dd[2]{y_\lambda}
|
|
\frac{\eu^{-\abs{y_\lambda}^2\bar{n}_\lambda}}{\pi\bar{n}_\lambda})\tr[L^\dag\qty{\dot{B}(t) + \dot{\xi}(t)}
|
|
\tilde{U}(t)\ketbra{\psi}\otimes\ketbra{0} \tilde{U}(t)^\dag].
|
|
\end{aligned}
|
|
\end{equation}
|
|
which returns us to the zero temperature formalism with a transformed
|
|
Hamiltonian and the replacement
|
|
\begin{eqnarray}
|
|
\label{eq:breplacement}
|
|
B(t) \rightarrow B(t) + \xi(t)
|
|
\end{eqnarray}
|
|
which plausibly corresponds to the \(L^\dag\) part of \(H_I + H_{\mathrm{sys}}^{\mathrm{shift}}\).
|
|
|
|
The appearance of \(\dot{\xi}(t)\) may cause concern. However, for
|
|
twice differentiable \(\mathcal{M}(\xi(t)\xi^\ast(s))\) the sample
|
|
trajectories are smooth.
|
|
|
|
Alternatively we can calculate
|
|
\begin{equation}
|
|
\label{eq:gettingarounddot}
|
|
\begin{aligned}
|
|
\ev{\dot{H}_{\mathrm{sys}}^{\mathrm{shift}}} &=
|
|
\dv{\ev{H_{\mathrm{sys}}^{\mathrm{shift}}}}{t} -
|
|
\frac{1}{\iu}\qty(\ev{H_{\mathrm{sys}}^{\mathrm{shift}}H} -\ev{H
|
|
H_{\mathrm{sys}}^{\mathrm{shift}}}) \\
|
|
&=\dv{\ev{H_{\mathrm{sys}}^{\mathrm{shift}}}}{t} -
|
|
\frac{1}{\iu}\ev{[H_{\mathrm{sys}}^{\mathrm{shift}}, H]} \\
|
|
&=\dv{\ev{H_{\mathrm{sys}}^{\mathrm{shift}}}}{t} -
|
|
\frac{1}{\iu}\ev{[H_{\mathrm{sys}}^{\mathrm{shift}}, H_I]}.
|
|
\end{aligned}
|
|
\end{equation}
|
|
|
|
|
|
Now,
|
|
\begin{equation}
|
|
\label{eq:hshcomm}
|
|
[H_{\mathrm{sys}}^{\mathrm{shift}}, H_I] = \xi(t) [L^\dag, L]
|
|
B(t)^\dag + \xi^\ast(t) [L, L^\dag] B
|
|
\end{equation}
|
|
and therefore
|
|
\begin{equation}
|
|
\label{eq:finalex}
|
|
\ev{[H_{\mathrm{sys}}^{\mathrm{shift}}, H_I]} = -i \mathcal{M}_{\eta^\ast}\mel{\psi}{\xi(t)^\ast[L,L^\dag]D_t}{\psi}.
|
|
\end{equation}
|
|
This is an expression that we can easily evaluate with the HOPS
|
|
method.
|
|
|
|
\printbibliography{}
|
|
\end{document}
|
|
|
|
|
|
|
|
|
|
%%% Local Variables:
|
|
%%% mode: latex
|
|
%%% TeX-master: t
|
|
%%% End:
|