mirror of
https://github.com/vale981/master-thesis
synced 2025-03-09 12:46:38 -04:00
280 lines
7.9 KiB
Python
280 lines
7.9 KiB
Python
"""Utilities for the energy flow calculation."""
|
||
import itertools
|
||
import functools
|
||
import multiprocessing
|
||
import numpy as np
|
||
import scipy
|
||
from typing import Iterator, Optional, Any, Callable, Union
|
||
from lmfit import minimize, Parameters
|
||
from numpy.polynomial import Polynomial
|
||
from tqdm import tqdm
|
||
|
||
|
||
def apply_operator(ψ: np.ndarray, op: np.ndarray) -> np.ndarray:
|
||
"""
|
||
Applies the operator ``op`` to each element of the time series
|
||
ψ of the dimensions ``(*, dim)`` where ``dim`` is the hilbert
|
||
space dimension.
|
||
"""
|
||
|
||
return np.array((op @ ψ.T).T)
|
||
|
||
|
||
def sandwhich_operator(
|
||
ψ: np.ndarray, op: np.ndarray, normalize: bool = False
|
||
) -> np.ndarray:
|
||
"""
|
||
Applies the operator ``op`` to each element of the time
|
||
series ψ of the dimensions ``(*, dim)`` where ``dim`` is the
|
||
hilbert space dimension and sandwiches ``ψ`` onto it from the
|
||
left. If ``normalize`` is :any:`True` then the value will be
|
||
divided by the squared norm.
|
||
"""
|
||
|
||
exp_val = np.sum(ψ.conj() * apply_operator(ψ, op), axis=1)
|
||
|
||
if normalize:
|
||
exp_val /= np.sum(ψ.conj() * ψ, axis=1).real
|
||
|
||
return exp_val
|
||
|
||
|
||
def operator_expectation(ρ: np.ndarray, op: np.ndarray) -> np.ndarray:
|
||
"""Calculates the expecation value of ``op`` as a time series.
|
||
|
||
:param ρ: The state as time series. ``(time, dim-sys, dim-sys)``
|
||
:param op: The operator.
|
||
:returns: the expectation value
|
||
"""
|
||
|
||
return np.einsum("ijk,kj", ρ, op).real
|
||
|
||
|
||
def operator_expectation_ensemble(
|
||
ψs: Iterator[np.ndarray],
|
||
op: np.ndarray,
|
||
N: Optional[int],
|
||
normalize: bool = False,
|
||
**kwargs,
|
||
) -> np.ndarray:
|
||
"""Calculates the expecation value of ``op`` as a time series.
|
||
|
||
:param ψs: A collection of stochastic trajectories. Each
|
||
element should have the shape ``(time, dim-sys)``.
|
||
:param op: The operator.
|
||
:param N: Number of samples to take.
|
||
|
||
All the other kwargs are passed on to :any:`ensemble_mean`.
|
||
|
||
:returns: the expectation value
|
||
"""
|
||
|
||
return ensemble_mean(
|
||
ψs, sandwhich_operator, N, const_args=(op, normalize), **kwargs
|
||
)
|
||
|
||
|
||
def mulitply_hierarchy(left: np.ndarray, right: np.ndarray) -> np.ndarray:
|
||
"""Multiply each hierarchy member with a member of ``left`` for each time step.
|
||
|
||
:param left: array of shape ``(hierarchy-width,)``
|
||
:param right: array of shape ``(time-steps, hierarchy-width, system-dimension)``
|
||
"""
|
||
|
||
return left[None, :, None] * right
|
||
|
||
|
||
def dot_with_hierarchy(left: np.ndarray, right: np.ndarray) -> np.ndarray:
|
||
r"""Calculates :math:`\sum_k \langle\mathrm{left} | \mathrm{right}^{(e_k)}\rangle` for
|
||
each time step.
|
||
|
||
:param left: array of shape ``(time-steps, system-dimension, hierarchy-width,)``
|
||
:param right: array of shape ``(time-steps, hierarchy-width, system-dimension)``
|
||
"""
|
||
|
||
return np.sum(left[:, None, :] * right, axis=(1, 2))
|
||
|
||
|
||
def α_apprx(τ: np.ndarray, G: np.ndarray, W: np.ndarray) -> np.ndarray:
|
||
r"""
|
||
Calculate exponential expansion $\sum_i G_i \exp(W_i * τ)$ of the
|
||
BCF along ``τ``.
|
||
|
||
:param τ: the time
|
||
:param G: pefactors
|
||
:param W: exponents
|
||
:returns: the exponential expansion evaluated at ``τ``
|
||
"""
|
||
|
||
return np.sum(
|
||
G[np.newaxis, :] * np.exp(-W[np.newaxis, :] * (τ[:, np.newaxis])), axis=1
|
||
)
|
||
|
||
|
||
def integrate_array(arr: np.ndarray, t: np.ndarray) -> np.ndarray:
|
||
"""
|
||
Calculates the antiderivative of the function sampled in ``arr``
|
||
along ``t``.
|
||
"""
|
||
|
||
return scipy.integrate.cumulative_trapezoid(arr, t, initial=0)
|
||
|
||
|
||
###############################################################################
|
||
# Ensemble Mean #
|
||
###############################################################################
|
||
|
||
_ENSEMBLE_MEAN_ARGS: tuple = tuple()
|
||
_ENSEMBLE_MEAN_KWARGS: dict = dict()
|
||
|
||
|
||
def _ENSEMBLE_FUNC(_, *args, **kwargs):
|
||
return _
|
||
|
||
|
||
def _ensemble_mean_call(arg) -> np.ndarray:
|
||
global _ENSEMBLE_MEAN_ARGS
|
||
global _ENSEMBLE_MEAN_KWARGS
|
||
|
||
return _ENSEMBLE_FUNC(arg, *_ENSEMBLE_MEAN_ARGS, **_ENSEMBLE_MEAN_KWARGS)
|
||
|
||
|
||
def _ensemble_mean_init(func: Callable, args: tuple, kwargs: dict):
|
||
global _ENSEMBLE_FUNC
|
||
global _ENSEMBLE_MEAN_ARGS
|
||
global _ENSEMBLE_MEAN_KWARGS
|
||
|
||
_ENSEMBLE_FUNC = func
|
||
_ENSEMBLE_MEAN_ARGS = args
|
||
_ENSEMBLE_MEAN_KWARGS = kwargs
|
||
|
||
|
||
# TODO: Use paramspec
|
||
|
||
|
||
class WelfordAggregator:
|
||
__slots__ = ["n", "mean", "_m_2"]
|
||
|
||
def __init__(self, first_value: np.ndarray):
|
||
self.n = 1
|
||
self.mean = first_value
|
||
self._m_2 = np.zeros_like(first_value)
|
||
|
||
def update(self, new_value: np.ndarray):
|
||
self.n += 1
|
||
delta = new_value - self.mean
|
||
self.mean += delta / self.n
|
||
delta2 = new_value - self.mean
|
||
self._m_2 += delta * delta2
|
||
|
||
@property
|
||
def sample_variance(self) -> np.ndarray:
|
||
return self._m_2 / (self.n - 1)
|
||
|
||
@property
|
||
def ensemble_variance(self) -> np.ndarray:
|
||
return self.sample_variance / self.n
|
||
|
||
@property
|
||
def ensemble_std(self) -> np.ndarray:
|
||
return np.sqrt(self.ensemble_variance)
|
||
|
||
|
||
def ensemble_mean(
|
||
arg_iter: Iterator[Any],
|
||
function: Callable[..., np.ndarray],
|
||
N: Optional[int] = None,
|
||
const_args: tuple = tuple(),
|
||
const_kwargs: dict = dict(),
|
||
n_proc: Optional[int] = None,
|
||
every: Optional[int] = None,
|
||
):
|
||
|
||
results = []
|
||
aggregate = WelfordAggregator(function(next(arg_iter), *const_args))
|
||
|
||
if not n_proc:
|
||
n_proc = multiprocessing.cpu_count()
|
||
|
||
with multiprocessing.Pool(
|
||
processes=n_proc,
|
||
initializer=_ensemble_mean_init,
|
||
initargs=(function, const_args, const_kwargs),
|
||
) as pool:
|
||
result_iter = pool.imap_unordered(
|
||
_ensemble_mean_call,
|
||
itertools.islice(arg_iter, None, N - 1 if N else None),
|
||
10,
|
||
)
|
||
|
||
for res in tqdm(result_iter, total=(N - 1)):
|
||
aggregate.update(res)
|
||
|
||
if every is not None and (aggregate.n % every) == 0 or aggregate.n == N:
|
||
results.append(
|
||
(aggregate.n, aggregate.mean.copy(), aggregate.ensemble_std.copy())
|
||
)
|
||
|
||
if not every:
|
||
results = results[-1]
|
||
|
||
return results
|
||
|
||
|
||
def fit_α(
|
||
α: Callable[[np.ndarray], np.ndarray],
|
||
n: int,
|
||
t_max: float,
|
||
support_points: Union[int, np.ndarray] = 1000,
|
||
) -> tuple[np.ndarray, np.ndarray]:
|
||
"""
|
||
Fit the BCF ``α`` to a sum of ``n`` exponentials up to
|
||
``t_max`` using a number of ``support_points``.
|
||
"""
|
||
|
||
def residual(fit_params, x, data):
|
||
resid = 0
|
||
w = np.array([fit_params[f"w{i}"] for i in range(n)]) + 1j * np.array(
|
||
[fit_params[f"wi{i}"] for i in range(n)]
|
||
)
|
||
g = np.array([fit_params[f"g{i}"] for i in range(n)]) + 1j * np.array(
|
||
[fit_params[f"gi{i}"] for i in range(n)]
|
||
)
|
||
resid = data - α_apprx(x, g, w)
|
||
|
||
return resid.view(float)
|
||
|
||
fit_params = Parameters()
|
||
for i in range(n):
|
||
fit_params.add(f"g{i}", value=0.1)
|
||
fit_params.add(f"gi{i}", value=0.1)
|
||
fit_params.add(f"w{i}", value=0.1)
|
||
fit_params.add(f"wi{i}", value=0.1)
|
||
|
||
ts = np.asarray(support_points)
|
||
if ts.size < 2:
|
||
ts = np.linspace(0, t_max, support_points)
|
||
|
||
out = minimize(residual, fit_params, args=(ts, α(ts)))
|
||
|
||
w = np.array([out.params[f"w{i}"] for i in range(n)]) + 1j * np.array(
|
||
[out.params[f"wi{i}"] for i in range(n)]
|
||
)
|
||
g = np.array([out.params[f"g{i}"] for i in range(n)]) + 1j * np.array(
|
||
[out.params[f"gi{i}"] for i in range(n)]
|
||
)
|
||
|
||
return w, g
|
||
|
||
|
||
def except_element(array: np.ndarray, index: int) -> np.ndarray:
|
||
"""Returns the ``array`` except the element with ``index``."""
|
||
mask = [i != index for i in range(array.size)]
|
||
return array[mask]
|
||
|
||
|
||
def poly_real(p: Polynomial) -> Polynomial:
|
||
"""Return the real part of ``p``."""
|
||
new = p.copy()
|
||
new.coef = p.coef.real
|
||
return new
|