master-thesis/python/richard_hops/sobol_lib.py

604 lines
No EOL
13 KiB
Python

from numpy import *
def i4_bit_hi1 ( n ):
#*****************************************************************************80
#
## I4_BIT_HI1 returns the position of the high 1 bit base 2 in an integer.
#
# Example:
#
# N Binary BIT
# ---- -------- ----
# 0 0 0
# 1 1 1
# 2 10 2
# 3 11 2
# 4 100 3
# 5 101 3
# 6 110 3
# 7 111 3
# 8 1000 4
# 9 1001 4
# 10 1010 4
# 11 1011 4
# 12 1100 4
# 13 1101 4
# 14 1110 4
# 15 1111 4
# 16 10000 5
# 17 10001 5
# 1023 1111111111 10
# 1024 10000000000 11
# 1025 10000000001 11
#
# Licensing:
#
# This code is distributed under the GNU LGPL license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Parameters:
#
# Input, integer N, the integer to be measured.
# N should be nonnegative. If N is nonpositive, the value will always be 0.
#
# Output, integer BIT, the number of bits base 2.
#
i = math.floor ( n )
bit = 0
while ( 1 ):
if ( i <= 0 ):
break
bit += 1
i = math.floor ( i / 2. )
return bit
def i4_bit_lo0 ( n ):
#*****************************************************************************80
#
## I4_BIT_LO0 returns the position of the low 0 bit base 2 in an integer.
#
# Example:
#
# N Binary BIT
# ---- -------- ----
# 0 0 1
# 1 1 2
# 2 10 1
# 3 11 3
# 4 100 1
# 5 101 2
# 6 110 1
# 7 111 4
# 8 1000 1
# 9 1001 2
# 10 1010 1
# 11 1011 3
# 12 1100 1
# 13 1101 2
# 14 1110 1
# 15 1111 5
# 16 10000 1
# 17 10001 2
# 1023 1111111111 1
# 1024 10000000000 1
# 1025 10000000001 1
#
# Licensing:
#
# This code is distributed under the GNU LGPL license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Parameters:
#
# Input, integer N, the integer to be measured.
# N should be nonnegative.
#
# Output, integer BIT, the position of the low 1 bit.
#
bit = 0
i = math.floor ( n )
while ( 1 ):
bit = bit + 1
i2 = math.floor ( i / 2. )
if ( i == 2 * i2 ):
break
i = i2
return bit
def i4_sobol_generate ( m, n, skip ):
#*****************************************************************************80
#
## I4_SOBOL_GENERATE generates a Sobol dataset.
#
# Licensing:
#
# This code is distributed under the GNU LGPL license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Parameters:
#
# Input, integer M, the spatial dimension.
#
# Input, integer N, the number of points to generate.
#
# Input, integer SKIP, the number of initial points to skip.
#
# Output, real R(M,N), the points.
#
r=zeros((m,n))
for j in range (1, n+1):
seed = skip + j - 2
[ r[0:m,j-1], seed ] = i4_sobol ( m, seed )
return r
def i4_sobol ( dim_num, seed ):
#*****************************************************************************80
#
## I4_SOBOL generates a new quasirandom Sobol vector with each call.
#
# Discussion:
#
# The routine adapts the ideas of Antonov and Saleev.
#
# Licensing:
#
# This code is distributed under the GNU LGPL license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original FORTRAN77 version by Bennett Fox.
# MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Reference:
#
# Antonov, Saleev,
# USSR Computational Mathematics and Mathematical Physics,
# Volume 19, 1980, pages 252 - 256.
#
# Paul Bratley, Bennett Fox,
# Algorithm 659:
# Implementing Sobol's Quasirandom Sequence Generator,
# ACM Transactions on Mathematical Software,
# Volume 14, Number 1, pages 88-100, 1988.
#
# Bennett Fox,
# Algorithm 647:
# Implementation and Relative Efficiency of Quasirandom
# Sequence Generators,
# ACM Transactions on Mathematical Software,
# Volume 12, Number 4, pages 362-376, 1986.
#
# Ilya Sobol,
# USSR Computational Mathematics and Mathematical Physics,
# Volume 16, pages 236-242, 1977.
#
# Ilya Sobol, Levitan,
# The Production of Points Uniformly Distributed in a Multidimensional
# Cube (in Russian),
# Preprint IPM Akad. Nauk SSSR,
# Number 40, Moscow 1976.
#
# Parameters:
#
# Input, integer DIM_NUM, the number of spatial dimensions.
# DIM_NUM must satisfy 1 <= DIM_NUM <= 40.
#
# Input/output, integer SEED, the "seed" for the sequence.
# This is essentially the index in the sequence of the quasirandom
# value to be generated. On output, SEED has been set to the
# appropriate next value, usually simply SEED+1.
# If SEED is less than 0 on input, it is treated as though it were 0.
# An input value of 0 requests the first (0-th) element of the sequence.
#
# Output, real QUASI(DIM_NUM), the next quasirandom vector.
#
global atmost
global dim_max
global dim_num_save
global initialized
global lastq
global log_max
global maxcol
global poly
global recipd
global seed_save
global v
if ( not 'initialized' in list(globals().keys()) ):
initialized = 0
dim_num_save = -1
if ( not initialized or dim_num != dim_num_save ):
initialized = 1
dim_max = 40
dim_num_save = -1
log_max = 30
seed_save = -1
#
# Initialize (part of) V.
#
v = zeros((dim_max,log_max))
v[0:40,0] = transpose([ \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])
v[2:40,1] = transpose([ \
1, 3, 1, 3, 1, 3, 3, 1, \
3, 1, 3, 1, 3, 1, 1, 3, 1, 3, \
1, 3, 1, 3, 3, 1, 3, 1, 3, 1, \
3, 1, 1, 3, 1, 3, 1, 3, 1, 3 ])
v[3:40,2] = transpose([ \
7, 5, 1, 3, 3, 7, 5, \
5, 7, 7, 1, 3, 3, 7, 5, 1, 1, \
5, 3, 3, 1, 7, 5, 1, 3, 3, 7, \
5, 1, 1, 5, 7, 7, 5, 1, 3, 3 ])
v[5:40,3] = transpose([ \
1, 7, 9,13,11, \
1, 3, 7, 9, 5,13,13,11, 3,15, \
5, 3,15, 7, 9,13, 9, 1,11, 7, \
5,15, 1,15,11, 5, 3, 1, 7, 9 ])
v[7:40,4] = transpose([ \
9, 3,27, \
15,29,21,23,19,11,25, 7,13,17, \
1,25,29, 3,31,11, 5,23,27,19, \
21, 5, 1,17,13, 7,15, 9,31, 9 ])
v[13:40,5] = transpose([ \
37,33, 7, 5,11,39,63, \
27,17,15,23,29, 3,21,13,31,25, \
9,49,33,19,29,11,19,27,15,25 ])
v[19:40,6] = transpose([ \
13, \
33,115, 41, 79, 17, 29,119, 75, 73,105, \
7, 59, 65, 21, 3,113, 61, 89, 45,107 ])
v[37:40,7] = transpose([ \
7, 23, 39 ])
#
# Set POLY.
#
poly= [ \
1, 3, 7, 11, 13, 19, 25, 37, 59, 47, \
61, 55, 41, 67, 97, 91, 109, 103, 115, 131, \
193, 137, 145, 143, 241, 157, 185, 167, 229, 171, \
213, 191, 253, 203, 211, 239, 247, 285, 369, 299 ]
atmost = 2**log_max - 1
#
# Find the number of bits in ATMOST.
#
maxcol = i4_bit_hi1 ( atmost )
#
# Initialize row 1 of V.
#
v[0,0:maxcol] = 1
#
# Things to do only if the dimension changed.
#
if ( dim_num != dim_num_save ):
#
# Check parameters.
#
if ( dim_num < 1 or dim_max < dim_num ):
print('I4_SOBOL - Fatal error!')
print(' The spatial dimension DIM_NUM should satisfy:')
print(' 1 <= DIM_NUM <= %d'%dim_max)
print(' But this input value is DIM_NUM = %d'%dim_num)
return
dim_num_save = dim_num
#
# Initialize the remaining rows of V.
#
for i in range(2 , dim_num+1):
#
# The bits of the integer POLY(I) gives the form of polynomial I.
#
# Find the degree of polynomial I from binary encoding.
#
j = poly[i-1]
m = 0
while ( 1 ):
j = math.floor ( j / 2. )
if ( j <= 0 ):
break
m = m + 1
#
# Expand this bit pattern to separate components of the logical array INCLUD.
#
j = poly[i-1]
includ=zeros(m)
for k in range(m, 0, -1):
j2 = math.floor ( j / 2. )
includ[k-1] = (j != 2 * j2 )
j = j2
#
# Calculate the remaining elements of row I as explained
# in Bratley and Fox, section 2.
#
for j in range( m+1, maxcol+1 ):
newv = v[i-1,j-m-1]
l = 1
for k in range(1, m+1):
l = 2 * l
if ( includ[k-1] ):
newv = bitwise_xor ( int(newv), int(l * v[i-1,j-k-1]) )
v[i-1,j-1] = newv
#
# Multiply columns of V by appropriate power of 2.
#
l = 1
for j in range( maxcol-1, 0, -1):
l = 2 * l
v[0:dim_num,j-1] = v[0:dim_num,j-1] * l
#
# RECIPD is 1/(common denominator of the elements in V).
#
recipd = 1.0 / ( 2 * l )
lastq=zeros(dim_num)
seed = int(math.floor ( seed ))
if ( seed < 0 ):
seed = 0
if ( seed == 0 ):
l = 1
lastq=zeros(dim_num)
elif ( seed == seed_save + 1 ):
#
# Find the position of the right-hand zero in SEED.
#
l = i4_bit_lo0 ( seed )
elif ( seed <= seed_save ):
seed_save = 0
l = 1
lastq=zeros(dim_num)
for seed_temp in range( int(seed_save), int(seed)):
l = i4_bit_lo0 ( seed_temp )
for i in range(1 , dim_num+1):
lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )
l = i4_bit_lo0 ( seed )
elif ( seed_save + 1 < seed ):
for seed_temp in range( int(seed_save + 1), int(seed) ):
l = i4_bit_lo0 ( seed_temp )
for i in range(1, dim_num+1):
lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )
l = i4_bit_lo0 ( seed )
#
# Check that the user is not calling too many times!
#
if ( maxcol < l ):
print('I4_SOBOL - Fatal error!')
print(' Too many calls!')
print(' MAXCOL = %d\n'%maxcol)
print(' L = %d\n'%l)
return
#
# Calculate the new components of QUASI.
#
quasi=zeros(dim_num)
for i in range( 1, dim_num+1):
quasi[i-1] = lastq[i-1] * recipd
lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )
seed_save = seed
seed = seed + 1
return [ quasi, seed ]
def i4_uniform ( a, b, seed ):
#*****************************************************************************80
#
## I4_UNIFORM returns a scaled pseudorandom I4.
#
# Discussion:
#
# The pseudorandom number will be scaled to be uniformly distributed
# between A and B.
#
# Licensing:
#
# This code is distributed under the GNU LGPL license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Reference:
#
# Paul Bratley, Bennett Fox, Linus Schrage,
# A Guide to Simulation,
# Springer Verlag, pages 201-202, 1983.
#
# Pierre L'Ecuyer,
# Random Number Generation,
# in Handbook of Simulation,
# edited by Jerry Banks,
# Wiley Interscience, page 95, 1998.
#
# Bennett Fox,
# Algorithm 647:
# Implementation and Relative Efficiency of Quasirandom
# Sequence Generators,
# ACM Transactions on Mathematical Software,
# Volume 12, Number 4, pages 362-376, 1986.
#
# Peter Lewis, Allen Goodman, James Miller
# A Pseudo-Random Number Generator for the System/360,
# IBM Systems Journal,
# Volume 8, pages 136-143, 1969.
#
# Parameters:
#
# Input, integer A, B, the minimum and maximum acceptable values.
#
# Input, integer SEED, a seed for the random number generator.
#
# Output, integer C, the randomly chosen integer.
#
# Output, integer SEED, the updated seed.
#
if ( seed == 0 ):
print('I4_UNIFORM - Fatal error!')
print(' Input SEED = 0!')
seed = math.floor ( seed )
a = round ( a )
b = round ( b )
seed = mod ( seed, 2147483647 )
if ( seed < 0 ) :
seed = seed + 2147483647
k = math.floor ( seed / 127773 )
seed = 16807 * ( seed - k * 127773 ) - k * 2836
if ( seed < 0 ):
seed = seed + 2147483647
r = seed * 4.656612875E-10
#
# Scale R to lie between A-0.5 and B+0.5.
#
r = ( 1.0 - r ) * ( min ( a, b ) - 0.5 ) + r * ( max ( a, b ) + 0.5 )
#
# Use rounding to convert R to an integer between A and B.
#
value = round ( r )
value = max ( value, min ( a, b ) )
value = min ( value, max ( a, b ) )
c = value
return [ int(c), int(seed) ]
def prime_ge ( n ):
#*****************************************************************************80
#
## PRIME_GE returns the smallest prime greater than or equal to N.
#
#
# Example:
#
# N PRIME_GE
#
# -10 2
# 1 2
# 2 2
# 3 3
# 4 5
# 5 5
# 6 7
# 7 7
# 8 11
# 9 11
# 10 11
#
# Licensing:
#
# This code is distributed under the GNU LGPL license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Original MATLAB version by John Burkardt.
# PYTHON version by Corrado Chisari
#
# Parameters:
#
# Input, integer N, the number to be bounded.
#
# Output, integer P, the smallest prime number that is greater
# than or equal to N.
#
p = max ( math.ceil ( n ), 2 )
while ( not isprime ( p ) ):
p = p + 1
return p
def isprime(n):
#*****************************************************************************80
#
## IS_PRIME returns True if N is a prime number, False otherwise
#
#
# Licensing:
#
# This code is distributed under the GNU LGPL license.
#
# Modified:
#
# 22 February 2011
#
# Author:
#
# Corrado Chisari
#
# Parameters:
#
# Input, integer N, the number to be checked.
#
# Output, boolean value, True or False
#
if n!=int(n) or n<1:
return False
p=2
while p<n:
if n%p==0:
return False
p+=1
return True