master-thesis/python/energy_flow_proper/utilities.py

113 lines
3.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import stg_helper
from types import ModuleType
from typing import Callable, Tuple, Union
from lmfit import minimize, Parameters
import matplotlib.pyplot as plt
import numpy as np
from numpy.polynomial import Polynomial
def get_n_samples(stg: ModuleType) -> int:
"""Get the number of samples from ``stg``."""
with stg_helper.get_hierarchy_data(stg, read_only=True) as hd:
return hd.get_samples()
def has_all_samples(stg: ModuleType) -> bool:
return stg.__HI_number_of_samples == get_n_samples(stg)
def has_all_samples_checker(stg: ModuleType) -> Callable[..., bool]:
return "Has all samples?", lambda _: has_all_samples(stg)
def α_apprx(τ, g, w):
return np.sum(
g[np.newaxis, :] * np.exp(-w[np.newaxis, :] * (τ[:, np.newaxis])), axis=1
)
def fit_α(
α: Callable[[np.ndarray], np.ndarray],
n: int,
t_max: float,
support_points: Union[int, np.ndarray] = 1000,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Fit the BCF ``α`` to a sum of ``n`` exponentials up to
``t_max`` using a number of ``support_points``.
"""
def residual(fit_params, x, data):
resid = 0
w = np.array([fit_params[f"w{i}"] for i in range(n)]) + 1j * np.array(
[fit_params[f"wi{i}"] for i in range(n)]
)
g = np.array([fit_params[f"g{i}"] for i in range(n)]) + 1j * np.array(
[fit_params[f"gi{i}"] for i in range(n)]
)
resid = data - α_apprx(x, g, w)
return resid.view(float)
fit_params = Parameters()
for i in range(n):
fit_params.add(f"g{i}", value=0.1)
fit_params.add(f"gi{i}", value=0.1)
fit_params.add(f"w{i}", value=0.1)
fit_params.add(f"wi{i}", value=0.1)
ts = np.asarray(support_points)
if ts.size < 2:
ts = np.linspace(0, t_max, support_points)
out = minimize(residual, fit_params, args=(ts, α(ts)))
w = np.array([out.params[f"w{i}"] for i in range(n)]) + 1j * np.array(
[out.params[f"wi{i}"] for i in range(n)]
)
g = np.array([out.params[f"g{i}"] for i in range(n)]) + 1j * np.array(
[out.params[f"gi{i}"] for i in range(n)]
)
return w, g
def wrap_plot(f):
def wrapped(*args, ax=None, **kwargs):
fig = None
if not ax:
fig, ax = plt.subplots()
ret_val = f(*args, ax=ax, **kwargs)
return (fig, ax, ret_val) if ret_val else (fig, ax)
return wrapped
@wrap_plot
def plot_complex(x, y, *args, ax=None, label="", **kwargs):
label = label + ", " if (len(label) > 0) else ""
ax.plot(x, y.real, *args, label=f"{label}real part", **kwargs)
ax.plot(x, y.imag, *args, label=f"{label}imag part", **kwargs)
ax.legend()
def e_i(i: int, size: int) -> np.ndarray:
r"""Cartesian base vector :math:`e_i`."""
vec = np.zeros(size)
vec[i] = 1
return vec
def except_element(array: np.ndarray, index: int) -> np.ndarray:
mask = [i != index for i in range(array.size)]
return array[mask]
def poly_real(p: Polynomial) -> Polynomial:
"""Return the real part of ``p``."""
new = p.copy()
new.coef = p.coef.real
return new