\documentclass[fontsize=12pt,paper=a4,open=any, ,twoside=false,toc=listof,toc=bibliography, captions=nooneline,captions=tableabove,english,DIV=16,numbers=noenddot,final]{scrartcl} \usepackage{../hirostyle} \addbibresource{../references.bib} \synctex=1 \title{Analytical Solution for Quantum Brownian Motion with arbitrary BCF} \author{Valentin Boettcher} \date{\today} \begin{document} \maketitle \tableofcontents \section{Model} \label{sec:model} The model is given by the quadratic hamiltonian \begin{equation} \label{eq:hamiltonian} H = \frac{\Omega}{4}\qty(p^2+q^2) + \frac{1}{2} q \sum_\lambda\qty(g_\lambda^\ast b_\lambda + g_\lambda b^\dag_\lambda)+\sum_\lambda\omega_\lambda b^\dag_\lambda b_\lambda, \end{equation} where \(a,a^\dag\) are the ladder operators of the harmonic oscillator, \(q=a+a^\dag\) and \(p=\frac{1}{\iu}\qty(a-a^\dag)\) so that \([q,p] = 2\iu\). \section{Equations of Motion} \label{sec:eqmot} The Heisenberg equation yields \begin{align} \dot{q} &=\Omega p \label{eq:qdot}\\ \dot{p} &= -\Omega q - \int_0^t \Im[\alpha_0(t-s)] q(s)\dd{s} + W(t) \label{eq:pdot} \\ \dot{b}_\lambda &= -\iu g_\lambda \frac{q}{2} - \iu\omega_\lambda b_\lambda \end{align} with the operator noise \(W(t)=-\sum_\lambda \qty(g_\lambda^\ast b_\lambda(0) \eu^{-\iu\omega_\lambda t } + g_\lambda b_\lambda^\dag(0) \eu^{\iu\omega_\lambda t })\), \(\ev{W(t)W(s)}=\alpha(t-s)\) and \(\alpha_0 \equiv \eval{\alpha}_{T=0}\). The equations for \cref{eq:qdot} and \cref{eq:pdot} can be solved by finding a matrix \(G(t)\) with \(G(0)=\id\) and \begin{equation} \label{eq:eqmotprop} \dot{G}(t) = A G(t) - \int_0^t K(t-s) G(s)\dd{s},\quad A=\mqty(0 & \Omega \\ -\Omega & 0), \quad K(t)=\mqty(0 & 0\\ \Im[\alpha_0(t)] & 0). \end{equation} Then \begin{equation} \label{eq:qpsol} \mqty(q(t)\\ p(t)) = G(t)\mqty(q(0)\\ p(0)) + \int_0^tG(t-s) \mqty(0\\ W(s))\dd{s}. \end{equation} Because we are only interested in solutions for \(t\geq 0\) and the shape of the convolution in \cref{eq:eqmotprop} the solution may be found by virtue of the Laplace transform. Setting \begin{equation} \label{eq:laplprop} \mathcal{L}\{G\}(z) = \int_0^\infty \eu^{-z\cdot t} G(t) \end{equation} leads to an algebraic formula \begin{equation} \label{eq:galgebr} \mathcal{L}\{G\}(z) = \qty(z-A + \mathcal{L}\{K\}(z))^{-1}. \end{equation} \section{Solution} \label{sec:solution} We observe that \begin{equation} \label{eq:mdef} M = z-A + \mathcal{L}\{K\}(z) = \mqty(z & -\Omega\\ \Omega + \mathcal{L}\{\Im[\alpha_0]\}(z) & z) \end{equation} and therefore \begin{equation} \label{eq:minv} M^{-1} = \frac{1}{\Omega^2 + \Omega\mathcal{L}\{\Im[\alpha_0]\}(z) + z^2} \mqty(z & \Omega \\ -(\Omega + \mathcal{L}\{\Im[\alpha_0]\}(z)) & z). \end{equation} From this we can conclude that \(G_{11}=G_{22}\). Because \(\ev{W(s)}=0\) for thermal initial states of the bath we have \begin{equation} \label{eq:meanvals} \mqty(\ev{q(t)}\\ \ev{p(t)}) = G(t)\mqty(\ev{q(0)}\\ \ev{p(0)}). \end{equation} Knowing this, we can deduce from \(\ev{\dot{q}}= \Omega \ev{p}\) that \begin{align} \label{eq:onlyoneneeded} G_{11} &= \frac{\dot{G}_{12}}{\Omega} & G_{21} &=\frac{\ddot{G}_{12}}{\Omega^2}. \end{align} Therefore it suffices if we concern ourselves with \(G_{12}\). We nevertheless continue in full generality. Assume that \(\alpha_0(t)=\sum_{n=1}^N G_n \eu^{-W_n t - \i \varphi_n}\) with \(W_n=\gamma_n + \i\delta_n\) and \(G_n, \varphi_n, \gamma_n,\delta_n\in\RR\). This leads to a mathematically simple expression for the Laplace transform \begin{equation} \label{eq:laplace_alpha} \mathcal{L}\qty{\Im[\alpha_0]}(z) = -\sum_n G_n\qty[\frac{(z+\gamma_n)\sin\varphi_n+\delta_n\cos\varphi_n}{\delta_n^2+(\gamma_n+z)^2}]. \end{equation} Because \(\mathcal{L}\{\Im[\alpha_0]\}\) appears in the denominator of \cref{eq:minv} it is desirable to write \cref{eq:laplace_alpha} with a common denominator. Introducing \(s_n = \sin\varphi_n,\, c_n = \cos\varphi_n\) and \(z_n= -W_k\) we arrive at \begin{equation} \label{eq:laplace_alpha_better} \begin{aligned} \mathcal{L}\qty{\Im[\alpha_0]}(z) &= - \sum_n G_n\frac{(z_n+\gamma_n)s_n+ \delta_nc_n}{(z-z_n)(z-z_n^\ast)} \\ &= -\frac{\sum_n G_n \qty((z_n+\gamma_n)s_n+ \delta_nc_n)\prod_{k\neq n}(z-z_k)(z-z_k^\ast)}{\prod_{k}(z-z_k)(z-z_k^\ast)} \\ &= \frac{\sum_n f_n(z)\prod_{k\neq n}(z-z_k)(z-z_k^\ast)}{\prod_{k}(z-z_k)(z-z_k^\ast)} \end{aligned} \end{equation} with the polynomials of first degree \(f_n(z)=-G_n \qty((z_n+\gamma_n)s_n+\delta_nc_n)\). Because the above expression is a rational function, the components of \cref{eq:minv} are rational functions for which the Laplace transform is particularly simple to invert using the residue theorem. With this in mind we now calculate \begin{equation} \label{eq:prefactorrational} \frac{1}{\Omega^2 + \Omega\mathcal{L}\{\Im[\alpha_0]\}(z) + z^2} % =\frac{\prod_{k}(z-z_k)(z-z_k^\ast)}{\qty[(z+\i\Omega)(z-\i\Omega)]\prod_{k}(z-z_k)(z-z_k^\ast) % + \sum_n\Omega f_n(z)\prod_{k\neq n}(z-z_k)(z-z_k^\ast)}\\ =\frac{f_0(z)}{p_1(z) + \sum_n q_n(z)} = \frac{f_0(z)}{\mu\prod_{n=1}^{N+1}(z-\tilde{z}_l)(z-\tilde{z}^\ast_l)} = \frac{f_0(z)}{p(z)} \end{equation} where \begin{align} f_0(z) &= \prod_{k}(z-z_k)(z-z_k^\ast) \\ p_1(z) &= \qty[(z+\i\Omega)(z-\i\Omega)]\prod_{k}(z-z_k)(z-z_k^\ast) \\ q_n(z) &= \Omega f_n(z)\prod_{k\neq n}(z-z_k)(z-z_k^\ast) \end{align} and \(\mu\in\RR\). The \(\tilde{z}_l\) are the roots of the real polynomial \begin{equation} \label{eq:polyp} p(z) = p_1(z) + \sum_{n=1}^{N}q_n(z) \end{equation} of degree \(2(N+1)\) where we \textbf{assume that there are no roots with multiplicity greater than one}. With this we can now calculate the inverse laplace transform of expressions of the form \(\frac{f_0(z)g(z)}{p(z)}\) where \(g(z)\) is any holonome function so that \(\frac{f_0(z)g(z)}{p(z)} \eu^{z\cdot t}\) falls off fast enough for \(t\geq 0\), \(\Re(z)>\max_l{\Re(\tilde{z}_l)}=\Delta\) and \(\Re(z) \rightarrow -\infty\). With this we can close the contour of the inverse Laplace transform \begin{equation} \label{eq:invlap} \mathcal{L}^{-1}\qty{\frac{f_0(z)g(z)}{p(z)}}(t) = \frac{1}{2\pi\i}\int_{\Delta - \i\infty}^{\Delta + \i\infty} \frac{f_0(z)g(z)}{p(z)} \eu^{z\cdot t}\dd{z} \end{equation} to the left to obtain \begin{equation} \label{eq:simpleinvtrans} \mathcal{L}^{-1}\qty{\frac{f_0(z)g(z)}{p(z)}}(t) = \sum_{l=1}^{N+1}\qty[\frac{f_0(\tilde{z}_l)g(\tilde{z}_l)}{p'(\tilde{z}_l)} \eu^{\tilde{z}_l \cdot t} + \cc] \end{equation} where we assumed that \(g(z)^\ast=g(z^\ast)\) which is the case for all our purposes. For completeness we give \begin{equation} \label{eq:pderiv} p'(z) = 2\mu\sum_{k=1}^{N+1}\qty[(z-\Re(\tilde{z}_k))\prod_{\substack{n=1\\ n\neq k}}^{N+1}(z-\tilde{z}_n)(z-\tilde{z}^\ast_n)]. \end{equation} We can immediately conclude that all elements of \(G\) are sums of exponentials, just like the BCF. In particular \begin{equation} \label{eq:gfinal} G(t) = \sum_{l=1}^{N+1}\qty[R_l \mqty(\tilde{z}_l & \Omega \\ \frac{\tilde{z}_l^2}{\Omega} & \tilde{z}_l)\eu^{\tilde{z}_l \cdot t} + \cc] \end{equation} with \(R_l={f_0(\tilde{z}_l)}/{p'(\tilde{z}_l)}\). Note that we have assumed a thermal initial state which lead to a particularity simple expression for \(G_{21}\) as remarked earlier. \printbibliography{} \end{document} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: