#+PROPERTY: header-args :session stochproc_hartmann :kernel python :pandoc t #+begin_src jupyter-python %load_ext autoreload %autoreload 2 import numpy as np import stocproc as s import matplotlib.pyplot as plt #+end_src #+RESULTS: #+begin_src jupyter-python class Kernels: @classmethod def constant(_, c): def kernel(t): shp = np.max(t.shape) return np.ones((shp, shp)) * c return kernel @classmethod def squared_exp(_, l): def kernel(t): return np.exp(-t ** 2 / l) return kernel @classmethod def periodic(_, a, ω): def kernel(t): return np.exp(-np.abs(np.sin((t)) * ω) * a) return kernel @classmethod def squares(_): def kernel(t): return t ** 2 return kernel #+end_src #+RESULTS: #+begin_src jupyter-python proc = s.StocProc_KLE(Kernels.squared_exp(10), 10) #+end_src #+RESULTS: : stocproc.method_kle - INFO - check 33 grid points : stocproc.method_kle - INFO - calc_ac 1.275%, fredholm 2.881%, integr_intp 2.057%, spline 7.711%, calc_diff 59.392%, rest 26.684% : stocproc.method_kle - INFO - auto ng SUCCESSFUL max diff 8.097e-03 < tol 1.000e-02 ng 33 num evec 6 : alpha_k is real #+begin_src jupyter-python proc.new_process() plt.plot(proc.t, np.imag(proc())) plt.plot(proc.t, np.real(proc())) #+end_src #+RESULTS: :RESULTS: | | [[file:./.ob-jupyter/4ffe13e8d71bc05a2a7ec0d8dbdbec4e2c300f57.png]] :END: