\documentclass[fontsize=12pt,paper=a4,open=any, ,twoside=false,toc=listof,toc=bibliography, captions=nooneline,captions=tableabove,english,DIV=16,numbers=noenddot,final]{scrartcl} \usepackage{../hirostyle} \addbibresource{../references.bib} \synctex=1 \title{Analytical Solution for Quantum Brownian Motion with arbitrary BCF} \author{Valentin Boettcher} \date{\today} \begin{document} \maketitle \tableofcontents \section{Model} \label{sec:model} The model is given by the quadratic hamiltonian \begin{equation} \label{eq:hamiltonian} H = \frac{\Omega}{4}\qty(p^2+q^2) + \frac{1}{2} q \sum_\lambda\qty(g_\lambda^\ast b_\lambda + g_\lambda b^\dag_\lambda)+\sum_\lambda\omega_\lambda b^\dag_\lambda b_\lambda, \end{equation} where \(a,a^\dag\) are the ladder operators of the harmonic oscillator, \(q=a+a^\dag\) and \(p=\frac{1}{\iu}\qty(a-a^\dag)\) so that \([q,p] = 2\iu\). \section{Equations of Motion} \label{sec:eqmot} The Heisenberg equation yields \begin{align} \dot{q} &=\Omega p \label{eq:qdot}\\ \dot{p} &= -\Omega q - \int_0^t \Im[\alpha_0(t-s)] q(s)\dd{s} + W(t) \label{eq:pdot} \\ \dot{b}_\lambda &= -\iu g_\lambda \frac{q}{2} - \iu\omega_\lambda b_\lambda \end{align} with the operator noise \(W(t)=-\sum_\lambda \qty(g_\lambda^\ast b_\lambda(0) \eu^{-\iu\omega_\lambda t } + g_\lambda b_\lambda^\dag(0) \eu^{\iu\omega_\lambda t })\), \(\ev{W(t)W(s)}=\alpha(t-s)\) and \(\alpha_0 \equiv \eval{\alpha}_{T=0}\). The equations for \cref{eq:qdot} and \cref{eq:pdot} can be solved by finding a matrix \(G(t)\) with \(G(0)=\id\) and \begin{equation} \label{eq:eqmotprop} \dot{G}(t) = A G(t) - \int_0^t K(t-s) G(s)\dd{s},\quad A=\mqty(0 & \Omega \\ -\Omega & 0), \quad K(t)=\mqty(0 & 0\\ \Im[\alpha_0(t)] & 0). \end{equation} Then \begin{equation} \label{eq:qpsol} \mqty(q(t)\\ p(t)) = G(t)\mqty(q(0)\\ p(0)) + \int_0^tG(t-s) \mqty(0\\ W(s))\dd{s}. \end{equation} Because we are only interested in solutions for \(t\geq 0\) and the shape of the convolution in \cref{eq:eqmotprop} the solution may be found by virtue of the Laplace transform. Setting \begin{equation} \label{eq:laplprop} \mathcal{L}\{G\}(z) = \int_0^\infty \eu^{-z\cdot t} G(t) \end{equation} leads to an algebraic formula \begin{equation} \label{eq:galgebr} \mathcal{L}\{G\}(z) = \qty(z-A + \mathcal{L}\{K\}(z))^{-1}. \end{equation} \section{Solution} \label{sec:solution} We observe that \begin{equation} \label{eq:mdef} M = z-A + \mathcal{L}\{K\}(z) = \mqty(z & -\Omega\\ \Omega + \mathcal{L}\{\Im[\alpha_0]\}(z) & z) \end{equation} and therefore \begin{equation} \label{eq:minv} M^{-1} = \frac{1}{\Omega^2 + \Omega\mathcal{L}\{\Im[\alpha_0]\}(z) + z^2} \mqty(z & \Omega \\ -(\Omega + \mathcal{L}\{\Im[\alpha_0]\}(z)) & z). \end{equation} From this we can conclude that \(G_{11}=G_{22}\). Because \(\ev{W(s)}=0\) for thermal initial states of the bath we have \begin{equation} \label{eq:meanvals} \mqty(\ev{q(t)}\\ \ev{p(t)}) = G(t)\mqty(\ev{q(0)}\\ \ev{p(0)}). \end{equation} Knowing this, we can deduce from \(\ev{\dot{q}}= \Omega \ev{p}\) that \begin{align} \label{eq:onlyoneneeded} G_{11} &= \frac{\dot{G}_{12}}{\Omega} & G_{21} &=\frac{\ddot{G}_{12}}{\Omega^2}. \end{align} Therefore it suffices if we concern ourselves with \(G_{12}\). We nevertheless continue in full generality. Assume that \(\alpha_0(t)=\sum_{n=1}^N G_n \eu^{-W_n t - \i \varphi_n}\) with \(W_n=\gamma_n + \i\delta_n\) and \(G_n, \varphi_n, \gamma_n,\delta_n\in\RR\). This leads to a mathematically simple expression for the Laplace transform \begin{equation} \label{eq:laplace_alpha} \mathcal{L}\qty{\Im[\alpha_0]}(z) = -\sum_n G_n\qty[\frac{(z+\gamma_n)\sin\varphi_n+\delta_n\cos\varphi_n}{\delta_n^2+(\gamma_n+z)^2}]. \end{equation} Because \(\mathcal{L}\{\Im[\alpha_0]\}\) appears in the denominator of \cref{eq:minv} it is desirable to write \cref{eq:laplace_alpha} with a common denominator. Introducing \(s_n = \sin\varphi_n,\, c_n = \cos\varphi_n\) and \(z_n= -W_k\) we arrive at \begin{equation} \label{eq:laplace_alpha_better} \begin{aligned} \mathcal{L}\qty{\Im[\alpha_0]}(z) &= - \sum_n G_n\frac{(z_n+\gamma_n)s_n+ \delta_nc_n}{(z-z_n)(z-z_n^\ast)} \\ &= -\frac{\sum_n G_n \qty((z_n+\gamma_n)s_n+ \delta_nc_n)\prod_{k\neq n}(z-z_k)(z-z_k^\ast)}{\prod_{k}(z-z_k)(z-z_k^\ast)} \\ &= \frac{\sum_n f_n(z)\prod_{k\neq n}(z-z_k)(z-z_k^\ast)}{\prod_{k}(z-z_k)(z-z_k^\ast)} \end{aligned} \end{equation} with the polynomials of first degree \(f_n(z)=-G_n \qty((z_n+\gamma_n)s_n+\delta_nc_n)\). Because the above expression is a rational function, the components of \cref{eq:minv} are rational functions for which the Laplace transform is particularly simple to invert using the residue theorem. With this in mind we now calculate \begin{equation} \label{eq:prefactorrational} \frac{1}{\Omega^2 + \Omega\mathcal{L}\{\Im[\alpha_0]\}(z) + z^2} % =\frac{\prod_{k}(z-z_k)(z-z_k^\ast)}{\qty[(z+\i\Omega)(z-\i\Omega)]\prod_{k}(z-z_k)(z-z_k^\ast) % + \sum_n\Omega f_n(z)\prod_{k\neq n}(z-z_k)(z-z_k^\ast)}\\ =\frac{f_0(z)}{p_1(z) + \sum_n q_n(z)} = \frac{f_0(z)}{\mu\prod_{n=1}^{N+1}(z-\tilde{z}_l)(z-\tilde{z}^\ast_l)} = \frac{f_0(z)}{p(z)} \end{equation} where \begin{align} f_0(z) &= \prod_{k}(z-z_k)(z-z_k^\ast) \\ p_1(z) &= \qty[(z+\i\Omega)(z-\i\Omega)]\prod_{k}(z-z_k)(z-z_k^\ast) \\ q_n(z) &= \Omega f_n(z)\prod_{k\neq n}(z-z_k)(z-z_k^\ast) \end{align} and \(\mu\in\RR\). The \(\tilde{z}_l\) are the roots of the real polynomial \begin{equation} \label{eq:polyp} p(z) = p_1(z) + \sum_{n=1}^{N}q_n(z) \end{equation} of degree \(2(N+1)\) where we \textbf{assume that there are no roots with multiplicity greater than one}. With this we can now calculate the inverse laplace transform of expressions of the form \(\frac{f_0(z)g(z)}{p(z)}\) where \(g(z)\) is any holonome function so that \(\frac{f_0(z)g(z)}{p(z)} \eu^{z\cdot t}\) falls off fast enough for \(t\geq 0\), \(\Re(z)>\max_l{\Re(\tilde{z}_l)}=\Delta\) and \(\Re(z) \rightarrow -\infty\). With this we can close the contour of the inverse Laplace transform \begin{equation} \label{eq:invlap} \mathcal{L}^{-1}\qty{\frac{f_0(z)g(z)}{p(z)}}(t) = \frac{1}{2\pi\i}\int_{\Delta - \i\infty}^{\Delta + \i\infty} \frac{f_0(z)g(z)}{p(z)} \eu^{z\cdot t}\dd{z} \end{equation} to the left to obtain \begin{equation} \label{eq:simpleinvtrans} \mathcal{L}^{-1}\qty{\frac{f_0(z)g(z)}{p(z)}}(t) = \sum_{l=1}^{N+1}\qty[\frac{f_0(\tilde{z}_l)g(\tilde{z}_l)}{p'(\tilde{z}_l)} \eu^{\tilde{z}_l \cdot t} + \cc] \end{equation} where we assumed that \(g(z)^\ast=g(z^\ast)\) which is the case for all our purposes. For completeness we give \begin{equation} \label{eq:pderiv} p'(z) = 2\mu\sum_{k=1}^{N+1}\qty[(z-\Re(\tilde{z}_k))\prod_{\substack{n=1\\ n\neq k}}^{N+1}(z-\tilde{z}_n)(z-\tilde{z}^\ast_n)]. \end{equation} We can immediately conclude that all elements of \(G\) are sums of exponentials, just like the BCF. In particular \begin{equation} \label{eq:gfinal} G(t) = \sum_{l=1}^{N+1}\qty[R_l \mqty(\tilde{z}_l & \Omega \\ \frac{\tilde{z}_l^2}{\Omega} & \tilde{z}_l)\eu^{\tilde{z}_l \cdot t} + \cc] \end{equation} with \(R_l={f_0(\tilde{z}_l)}/{p'(\tilde{z}_l)}\). Note that we have assumed a thermal initial state which lead to a particularity simple expression for \(G_{21}\) as remarked earlier. \section{Applications} \label{sec:applications} Knowing \(G\) and \(\alpha\), we can calculate all observables of the system. Simple closed form expressions of sums of exponentials can be obtained by using an exponential expansions of \(\alpha\). \subsection{Correlation Functions} \label{sec:correl} We proceed to calculate \(\ev{q(t)q(s)}\). \printbibliography{} \end{document} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: