orientate on the paper

This commit is contained in:
Valentin Boettcher 2022-06-15 15:54:38 +02:00
parent 72d71a8790
commit ccde3cc4a9
2 changed files with 29 additions and 21 deletions

View file

@ -32,7 +32,8 @@ def anti_zeno_engine(
detune=0, detune=0,
δ=[2] * 2, δ=[2] * 2,
T_h=5, T_h=5,
therm_initial_state=False therm_initial_state=False,
s=1
): ):
# τ_bath = 1 / ω_c # τ_bath = 1 / ω_c
τ_mod = 2 * np.pi / Δ τ_mod = 2 * np.pi / Δ
@ -97,15 +98,15 @@ def anti_zeno_engine(
therm_methods=["tanhsinh", "fft"], therm_methods=["tanhsinh", "fft"],
) )
return model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s) return model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_mod)
model, Δ, params = anti_zeno_engine(ε=1/10, ε_couple=1/2, n=10, detune=4, ω_0 = 10, δ=[2]*2, γ=.05/2, therm_initial_state=True) model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s) = anti_zeno_engine(Δ = 15, ε=1/6, ω_c=1, ε_couple=.7, n=5, detune=-1, ω_0 = 20, δ=[2]*2, γ=.2, therm_initial_state=True)
#model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1]) #model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
params params
cycles
aux.integrate(model, 1000)
aux.integrate(model, 5000)
_, ax = fs.plot_energy_overview(model, markersize=1) _, ax = fs.plot_energy_overview(model, markersize=1)
# with aux.get_data(model) as data: # with aux.get_data(model) as data:

View file

@ -48,7 +48,8 @@ Init ray and silence stocproc.
detune=0, detune=0,
δ=[2] * 2, δ=[2] * 2,
T_h=5, T_h=5,
therm_initial_state=False therm_initial_state=False,
s=1
): ):
# τ_bath = 1 / ω_c # τ_bath = 1 / ω_c
τ_mod = 2 * np.pi / Δ τ_mod = 2 * np.pi / Δ
@ -113,13 +114,13 @@ Init ray and silence stocproc.
therm_methods=["tanhsinh", "fft"], therm_methods=["tanhsinh", "fft"],
) )
return model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s) return model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_mod)
#+end_src #+end_src
* Model Definition * Model Definition
#+begin_src jupyter-python #+begin_src jupyter-python
model, Δ, params = anti_zeno_engine(ε=1/10, ε_couple=1/2, n=10, detune=4, ω_0 = 10, δ=[2]*2, γ=.05/2, therm_initial_state=True) model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s) = anti_zeno_engine(Δ = 15, ε=1/6, ω_c=1, ε_couple=.7, n=5, detune=-1, ω_0 = 20, δ=[2]*2, γ=.2, therm_initial_state=True)
#model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1]) #model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
params params
#+end_src #+end_src
@ -129,10 +130,13 @@ Init ray and silence stocproc.
Let's test the assumptions of the paper. Let's test the assumptions of the paper.
#+begin_src jupyter-python :results none #+begin_src jupyter-python
cycles
#+end_src #+end_src
#+RESULTS:
: 13
** BCFs and Modulations ** BCFs and Modulations
#+begin_src jupyter-python :tangle nil #+begin_src jupyter-python :tangle nil
def thermal_bcf(t): def thermal_bcf(t):
@ -145,28 +149,31 @@ Let's test the assumptions of the paper.
#+RESULTS: #+RESULTS:
:RESULTS: :RESULTS:
| <matplotlib.lines.Line2D | at | 0x7f5d260e80a0> | | <matplotlib.lines.Line2D | at | 0x7f5cd835aa30> |
[[file:./.ob-jupyter/726ed9600beddd1075ec34af565217476ba75ded.svg]] [[file:./.ob-jupyter/58c1849bdc141b930cd11e4a0772548a750999af.svg]]
:END: :END:
#+begin_src jupyter-python :tangle nil #+begin_src jupyter-python :tangle nil
ωs = np.linspace(0, 20, 1000) ωs = np.linspace(0, 40, 10000)
plt.plot(ωs, model.spectral_density(0)(ωs)) mx = model.spectral_density(0)(ωs).max()
plt.plot(ωs, model.spectral_density(1)(ωs)) plt.plot(ωs, model.spectral_density(0)(ωs)/mx)
plt.plot(ωs, model.spectral_density(1)(ωs)/mx)
plt.axvline(model.H.operator_norm(0) * 2 + Δ) plt.axvline(model.H.operator_norm(0) * 2 + Δ)
plt.axvline(model.H.operator_norm(0) * 2 - Δ) plt.axvline(model.H.operator_norm(0) * 2 - Δ)
plt.plot(ωs, np.sinc((ωs - ω_0 + Δ) * τ_s * cycles))
plt.plot(ωs, np.sinc((ωs - ω_0 - Δ) * τ_s * cycles))
#+end_src #+end_src
#+RESULTS: #+RESULTS:
:RESULTS: :RESULTS:
: <matplotlib.lines.Line2D at 0x7f5d260d9940> | <matplotlib.lines.Line2D | at | 0x7f5cd83dcca0> |
[[file:./.ob-jupyter/fd95c61584398b96afe53c29cb8817e37a58f8bf.svg]] [[file:./.ob-jupyter/113b340dc8e93c0b6d1687dc2a92b9f3e746509b.svg]]
:END: :END:
** TODO Integration ** TODO Integration
#+begin_src jupyter-python #+begin_src jupyter-python
aux.integrate(model, 5000) aux.integrate(model, 1000)
#+end_src #+end_src
@ -184,7 +191,7 @@ Let's test the assumptions of the paper.
#+begin_example #+begin_example
--------------------------------------------------------------------------- ---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last) RuntimeError Traceback (most recent call last)
Input In [69], in <cell line: 1>() Input In [176], in <cell line: 1>()
----> 1 _, ax = fs.plot_energy_overview(model, markersize=1) ----> 1 _, ax = fs.plot_energy_overview(model, markersize=1)
 2 # with aux.get_data(model) as data:  2 # with aux.get_data(model) as data:
 3 # fs.plot_with_σ(model.t, model.total_energy(data), ax=ax)  3 # fs.plot_with_σ(model.t, model.total_energy(data), ax=ax)
@ -207,9 +214,9 @@ Let's test the assumptions of the paper.
 145 else:  145 else:
--> 146 raise RuntimeError(f"No data found for model with hash '{hexhash}'.") --> 146 raise RuntimeError(f"No data found for model with hash '{hexhash}'.")
RuntimeError: No data found for model with hash 'bd9e2510c88d49b8cb8938ff8510c4dd61a92ce8746d623e126886d9972ba9a0'. RuntimeError: No data found for model with hash 'da33647fd18c4384c29267fdef75d3a92854ae89e407f1c0e6d97499bf5462f9'.
#+end_example #+end_example
[[file:./.ob-jupyter/5977a58c06c307c5917aa9e110ab85b47f060ba4.svg]] [[file:./.ob-jupyter/107b34b88483dd236391c2dc9151730a6d4fd8d5.svg]]
:END: :END:
- **too fast decoupling kills it** - **too fast decoupling kills it**