mirror of
https://github.com/vale981/master-thesis
synced 2025-03-05 10:01:43 -05:00
orientate on the paper
This commit is contained in:
parent
72d71a8790
commit
ccde3cc4a9
2 changed files with 29 additions and 21 deletions
|
@ -32,7 +32,8 @@ def anti_zeno_engine(
|
||||||
detune=0,
|
detune=0,
|
||||||
δ=[2] * 2,
|
δ=[2] * 2,
|
||||||
T_h=5,
|
T_h=5,
|
||||||
therm_initial_state=False
|
therm_initial_state=False,
|
||||||
|
s=1
|
||||||
):
|
):
|
||||||
# τ_bath = 1 / ω_c
|
# τ_bath = 1 / ω_c
|
||||||
τ_mod = 2 * np.pi / Δ
|
τ_mod = 2 * np.pi / Δ
|
||||||
|
@ -97,15 +98,15 @@ def anti_zeno_engine(
|
||||||
therm_methods=["tanhsinh", "fft"],
|
therm_methods=["tanhsinh", "fft"],
|
||||||
)
|
)
|
||||||
|
|
||||||
return model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s)
|
return model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_mod)
|
||||||
|
|
||||||
model, Δ, params = anti_zeno_engine(ε=1/10, ε_couple=1/2, n=10, detune=4, ω_0 = 10, δ=[2]*2, γ=.05/2, therm_initial_state=True)
|
model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s) = anti_zeno_engine(Δ = 15, ε=1/6, ω_c=1, ε_couple=.7, n=5, detune=-1, ω_0 = 20, δ=[2]*2, γ=.2, therm_initial_state=True)
|
||||||
#model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
|
#model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
|
||||||
params
|
params
|
||||||
|
|
||||||
|
cycles
|
||||||
|
|
||||||
|
aux.integrate(model, 1000)
|
||||||
aux.integrate(model, 5000)
|
|
||||||
|
|
||||||
_, ax = fs.plot_energy_overview(model, markersize=1)
|
_, ax = fs.plot_energy_overview(model, markersize=1)
|
||||||
# with aux.get_data(model) as data:
|
# with aux.get_data(model) as data:
|
||||||
|
|
|
@ -48,7 +48,8 @@ Init ray and silence stocproc.
|
||||||
detune=0,
|
detune=0,
|
||||||
δ=[2] * 2,
|
δ=[2] * 2,
|
||||||
T_h=5,
|
T_h=5,
|
||||||
therm_initial_state=False
|
therm_initial_state=False,
|
||||||
|
s=1
|
||||||
):
|
):
|
||||||
# τ_bath = 1 / ω_c
|
# τ_bath = 1 / ω_c
|
||||||
τ_mod = 2 * np.pi / Δ
|
τ_mod = 2 * np.pi / Δ
|
||||||
|
@ -113,13 +114,13 @@ Init ray and silence stocproc.
|
||||||
therm_methods=["tanhsinh", "fft"],
|
therm_methods=["tanhsinh", "fft"],
|
||||||
)
|
)
|
||||||
|
|
||||||
return model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s)
|
return model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_mod)
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
|
||||||
* Model Definition
|
* Model Definition
|
||||||
#+begin_src jupyter-python
|
#+begin_src jupyter-python
|
||||||
model, Δ, params = anti_zeno_engine(ε=1/10, ε_couple=1/2, n=10, detune=4, ω_0 = 10, δ=[2]*2, γ=.05/2, therm_initial_state=True)
|
model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s) = anti_zeno_engine(Δ = 15, ε=1/6, ω_c=1, ε_couple=.7, n=5, detune=-1, ω_0 = 20, δ=[2]*2, γ=.2, therm_initial_state=True)
|
||||||
#model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
|
#model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
|
||||||
params
|
params
|
||||||
#+end_src
|
#+end_src
|
||||||
|
@ -129,10 +130,13 @@ Init ray and silence stocproc.
|
||||||
|
|
||||||
Let's test the assumptions of the paper.
|
Let's test the assumptions of the paper.
|
||||||
|
|
||||||
#+begin_src jupyter-python :results none
|
#+begin_src jupyter-python
|
||||||
|
cycles
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
#+RESULTS:
|
||||||
|
: 13
|
||||||
|
|
||||||
** BCFs and Modulations
|
** BCFs and Modulations
|
||||||
#+begin_src jupyter-python :tangle nil
|
#+begin_src jupyter-python :tangle nil
|
||||||
def thermal_bcf(t):
|
def thermal_bcf(t):
|
||||||
|
@ -145,28 +149,31 @@ Let's test the assumptions of the paper.
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
| <matplotlib.lines.Line2D | at | 0x7f5d260e80a0> |
|
| <matplotlib.lines.Line2D | at | 0x7f5cd835aa30> |
|
||||||
[[file:./.ob-jupyter/726ed9600beddd1075ec34af565217476ba75ded.svg]]
|
[[file:./.ob-jupyter/58c1849bdc141b930cd11e4a0772548a750999af.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
#+begin_src jupyter-python :tangle nil
|
#+begin_src jupyter-python :tangle nil
|
||||||
ωs = np.linspace(0, 20, 1000)
|
ωs = np.linspace(0, 40, 10000)
|
||||||
plt.plot(ωs, model.spectral_density(0)(ωs))
|
mx = model.spectral_density(0)(ωs).max()
|
||||||
plt.plot(ωs, model.spectral_density(1)(ωs))
|
plt.plot(ωs, model.spectral_density(0)(ωs)/mx)
|
||||||
|
plt.plot(ωs, model.spectral_density(1)(ωs)/mx)
|
||||||
plt.axvline(model.H.operator_norm(0) * 2 + Δ)
|
plt.axvline(model.H.operator_norm(0) * 2 + Δ)
|
||||||
plt.axvline(model.H.operator_norm(0) * 2 - Δ)
|
plt.axvline(model.H.operator_norm(0) * 2 - Δ)
|
||||||
|
plt.plot(ωs, np.sinc((ωs - ω_0 + Δ) * τ_s * cycles))
|
||||||
|
plt.plot(ωs, np.sinc((ωs - ω_0 - Δ) * τ_s * cycles))
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
: <matplotlib.lines.Line2D at 0x7f5d260d9940>
|
| <matplotlib.lines.Line2D | at | 0x7f5cd83dcca0> |
|
||||||
[[file:./.ob-jupyter/fd95c61584398b96afe53c29cb8817e37a58f8bf.svg]]
|
[[file:./.ob-jupyter/113b340dc8e93c0b6d1687dc2a92b9f3e746509b.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
|
|
||||||
** TODO Integration
|
** TODO Integration
|
||||||
#+begin_src jupyter-python
|
#+begin_src jupyter-python
|
||||||
aux.integrate(model, 5000)
|
aux.integrate(model, 1000)
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
|
||||||
|
@ -184,7 +191,7 @@ Let's test the assumptions of the paper.
|
||||||
#+begin_example
|
#+begin_example
|
||||||
[0;31m---------------------------------------------------------------------------[0m
|
[0;31m---------------------------------------------------------------------------[0m
|
||||||
[0;31mRuntimeError[0m Traceback (most recent call last)
|
[0;31mRuntimeError[0m Traceback (most recent call last)
|
||||||
Input [0;32mIn [69][0m, in [0;36m<cell line: 1>[0;34m()[0m
|
Input [0;32mIn [176][0m, in [0;36m<cell line: 1>[0;34m()[0m
|
||||||
[0;32m----> 1[0m _, ax [38;5;241m=[39m [43mfs[49m[38;5;241;43m.[39;49m[43mplot_energy_overview[49m[43m([49m[43mmodel[49m[43m,[49m[43m [49m[43mmarkersize[49m[38;5;241;43m=[39;49m[38;5;241;43m1[39;49m[43m)[49m
|
[0;32m----> 1[0m _, ax [38;5;241m=[39m [43mfs[49m[38;5;241;43m.[39;49m[43mplot_energy_overview[49m[43m([49m[43mmodel[49m[43m,[49m[43m [49m[43mmarkersize[49m[38;5;241;43m=[39;49m[38;5;241;43m1[39;49m[43m)[49m
|
||||||
[1;32m 2[0m [38;5;66;03m# with aux.get_data(model) as data:[39;00m
|
[1;32m 2[0m [38;5;66;03m# with aux.get_data(model) as data:[39;00m
|
||||||
[1;32m 3[0m [38;5;66;03m# fs.plot_with_σ(model.t, model.total_energy(data), ax=ax)[39;00m
|
[1;32m 3[0m [38;5;66;03m# fs.plot_with_σ(model.t, model.total_energy(data), ax=ax)[39;00m
|
||||||
|
@ -207,9 +214,9 @@ Let's test the assumptions of the paper.
|
||||||
[1;32m 145[0m [38;5;28;01melse[39;00m:
|
[1;32m 145[0m [38;5;28;01melse[39;00m:
|
||||||
[0;32m--> 146[0m [38;5;28;01mraise[39;00m [38;5;167;01mRuntimeError[39;00m([38;5;124mf[39m[38;5;124m"[39m[38;5;124mNo data found for model with hash [39m[38;5;124m'[39m[38;5;132;01m{[39;00mhexhash[38;5;132;01m}[39;00m[38;5;124m'[39m[38;5;124m.[39m[38;5;124m"[39m)
|
[0;32m--> 146[0m [38;5;28;01mraise[39;00m [38;5;167;01mRuntimeError[39;00m([38;5;124mf[39m[38;5;124m"[39m[38;5;124mNo data found for model with hash [39m[38;5;124m'[39m[38;5;132;01m{[39;00mhexhash[38;5;132;01m}[39;00m[38;5;124m'[39m[38;5;124m.[39m[38;5;124m"[39m)
|
||||||
|
|
||||||
[0;31mRuntimeError[0m: No data found for model with hash 'bd9e2510c88d49b8cb8938ff8510c4dd61a92ce8746d623e126886d9972ba9a0'.
|
[0;31mRuntimeError[0m: No data found for model with hash 'da33647fd18c4384c29267fdef75d3a92854ae89e407f1c0e6d97499bf5462f9'.
|
||||||
#+end_example
|
#+end_example
|
||||||
[[file:./.ob-jupyter/5977a58c06c307c5917aa9e110ab85b47f060ba4.svg]]
|
[[file:./.ob-jupyter/107b34b88483dd236391c2dc9151730a6d4fd8d5.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
- **too fast decoupling kills it**
|
- **too fast decoupling kills it**
|
||||||
|
|
Loading…
Add table
Reference in a new issue