update texed notes

This commit is contained in:
Valentin Boettcher 2022-03-15 11:48:07 +01:00
parent 0589f96971
commit 97aecd3d83
6 changed files with 112 additions and 109 deletions

View file

@ -400,7 +400,7 @@ stochastic process.
\label{sec:multibath}
For the models we consider in \fixme{citation,reference}, we have
\([H_\inter^{(i)}, H_\inter^{(j)}] = 0\), where \(i,j\) are the bath
\([H_\bath^{(i)}, H_\bath^{(j)}] = 0\), where \(i,j\) are the bath
indices. Therefore, we can apply the formalism of the previous
sections almost unchanged, by just taking care that all quantities
involved in the expression of \(J_n=-\dv{\ev{H_B^{(n)}}}{t}\) refer to

View file

@ -373,10 +373,10 @@ and
_{m,n}\frac{A_nG_m}{C_n+W_m}\qty(1-\eu^{-(C_n+W_m)t}) - ∑_{m,n}\frac{A_nU_m}{C_n+Q_m}\qty(1-\eu^{-(C_n+Q_m)t}).
\end{multline}
This concludes the calculation. A possible measure would be to write
\cref{eq:bathderiv_1} as a sum of exponentials and give explicit
expressions for the coefficients and exponents. This is not required
for now. Code implementing this can be found under
This concludes the calculation. A possible measure of simplification
would be to write \cref{eq:bathderiv_1} as a sum of exponentials and
give explicit expressions for the coefficients and exponents. This is
not required for now. Code implementing this can be found under
\url{https://github.com/vale981/hopsflow}.
\section{Two Oscillators, Two Baths}%
@ -526,7 +526,7 @@ of the two harmonic oscillators.
We find
\begin{equation}
\label{eq:generalcorr}
C_{ij}(t, s) = G_{ik}(t)G_{jl}(s) C(0,0)_{ij} +
C_{ij}(t, s) = G_{ik}(t)G_{jl}(s) C(0,0)_{kl} +
\underbrace{_0^t\dd{l}_0^s\dd{r}G_{ik}(t-l)G_{jl}(s-r) \ev{W_k(l)W_l(r)}}_{_{ij}}.
\end{equation}

100
tex/hiromacros.sty Normal file
View file

@ -0,0 +1,100 @@
\ProvidesPackage{hiromacros}
% Macros
%% qqgg
\newcommand{\qqgg}[0]{q\bar{q}\rightarrow\gamma\gamma}
%% ppgg
\newcommand{\ppgg}[0]{pp\rightarrow\gamma\gamma}
%% Momenta and Polarization Vectors convenience
\DeclareMathOperator{\ps}{\slashed{p}}
\DeclareMathOperator{\pe}{\varepsilon}
\DeclareMathOperator{\pes}{\slashed{\pe}}
\DeclareMathOperator{\pse}{\varepsilon^{*}}
\DeclareMathOperator{\pses}{\slashed{\pe}^{*}}
%% Spinor convenience
\DeclareMathOperator{\us}{u}
\DeclareMathOperator{\usb}{\bar{u}}
\DeclareMathOperator{\vs}{v}
\DeclareMathOperator*{\vsb}{\overline{v}}
%% Center of Mass energy
\DeclareMathOperator{\ecm}{E_{\text{CM}}}
%% area hyperbolicus
\DeclareMathOperator{\artanh}{artanh}
\DeclareMathOperator{\arcosh}{arcosh}
%% Fast Slash
\let\sl\slashed
%% hermitian/complex conjugate
\DeclareMathOperator{\hc}{h.c.}
\DeclareMathOperator{\cc}{c.c.}
%% eulers number
\def\eu{\ensuremath{\mathrm{e}}}
%% Notes on Equations
\newcommand{\shorteqnote}[1]{ & & \text{\small\llap{#1}}}
%% Typewriter Macros
\newcommand{\sherpa}{\texttt{Sherpa}}
\newcommand{\rivet}{\texttt{Rivet}}
\newcommand{\vegas}{\texttt{VEGAS}}
\newcommand{\lhapdf}{\texttt{LHAPDF6}}
\newcommand{\scipy}{\texttt{scipy}}
%% Sherpa Versions
\newcommand{\oldsherpa}{\texttt{2.2.10}}
\newcommand{\newsherpa}{\texttt{3.0.0} (unreleased)}
%% Special Names
\newcommand{\lhc}{\emph{LHC}}
%% Expected Value and Variance
\newcommand{\EX}[1]{\operatorname{E}\qty[#1]}
\newcommand{\VAR}[1]{\operatorname{VAR}\qty[#1]}
%% Uppercase Rho
\newcommand{\Rho}{P}
%% Transverse Momentum
\newcommand{\pt}[0]{p_\mathrm{T}}
%% Sign Function
\DeclareMathOperator{\sign}{sgn}
%% Stages
\newcommand{\stone}{\texttt{LO}}
\newcommand{\sttwo}{\texttt{LO+PS}}
\newcommand{\stthree}{\texttt{LO+PS+pT}}
\newcommand{\stfour}{\texttt{LO+PS+pT+Hadr.}}
\newcommand{\stfive}{\texttt{LO+PS+pT+Hadr.+MI}}
%% GeV
\newcommand{\gev}[1]{\SI{#1}{\giga\electronvolt}}
\def\iu{\ensuremath{\mathrm{i}}}
\def\i{\iu}
\def\id{\ensuremath{\mathbb{1}}}
\def\RR{\ensuremath{\mathbb{R}}}
\def\CC{\ensuremath{\mathbb{C}}}
% fixme
\newcommand{\fixme}[1]{\textbf{\textcolor{red}{FIXME:~#1}}}
% HOPS/NMQSD
\def\sys{\ensuremath{\mathrm{S}}}
\def\bath{\ensuremath{\mathrm{B}}}
\def\inter{\ensuremath{\mathrm{I}}}
\def\nth{\ensuremath{^{(n)}}}
\newcommand{\mat}[1]{\ensuremath{{\underline{\vb{#1}}}}}
\def\kmat{{\mat{k}}}

View file

@ -79,99 +79,3 @@ labelformat=brace, position=top]{subcaption}
%% Minus Sign for Matplotlib
\newunicodechar{}{-}
% Macros
%% qqgg
\newcommand{\qqgg}[0]{q\bar{q}\rightarrow\gamma\gamma}
%% ppgg
\newcommand{\ppgg}[0]{pp\rightarrow\gamma\gamma}
%% Momenta and Polarization Vectors convenience
\DeclareMathOperator{\ps}{\slashed{p}}
\DeclareMathOperator{\pe}{\varepsilon}
\DeclareMathOperator{\pes}{\slashed{\pe}}
\DeclareMathOperator{\pse}{\varepsilon^{*}}
\DeclareMathOperator{\pses}{\slashed{\pe}^{*}}
%% Spinor convenience
\DeclareMathOperator{\us}{u}
\DeclareMathOperator{\usb}{\bar{u}}
\DeclareMathOperator{\vs}{v}
\DeclareMathOperator*{\vsb}{\overline{v}}
%% Center of Mass energy
\DeclareMathOperator{\ecm}{E_{\text{CM}}}
%% area hyperbolicus
\DeclareMathOperator{\artanh}{artanh}
\DeclareMathOperator{\arcosh}{arcosh}
%% Fast Slash
\let\sl\slashed
%% hermitian/complex conjugate
\DeclareMathOperator{\hc}{h.c.}
\DeclareMathOperator{\cc}{c.c.}
%% eulers number
\def\eu{\ensuremath{\mathrm{e}}}
%% Notes on Equations
\newcommand{\shorteqnote}[1]{ & & \text{\small\llap{#1}}}
%% Typewriter Macros
\newcommand{\sherpa}{\texttt{Sherpa}}
\newcommand{\rivet}{\texttt{Rivet}}
\newcommand{\vegas}{\texttt{VEGAS}}
\newcommand{\lhapdf}{\texttt{LHAPDF6}}
\newcommand{\scipy}{\texttt{scipy}}
%% Sherpa Versions
\newcommand{\oldsherpa}{\texttt{2.2.10}}
\newcommand{\newsherpa}{\texttt{3.0.0} (unreleased)}
%% Special Names
\newcommand{\lhc}{\emph{LHC}}
%% Expected Value and Variance
\newcommand{\EX}[1]{\operatorname{E}\qty[#1]}
\newcommand{\VAR}[1]{\operatorname{VAR}\qty[#1]}
%% Uppercase Rho
\newcommand{\Rho}{P}
%% Transverse Momentum
\newcommand{\pt}[0]{p_\mathrm{T}}
%% Sign Function
\DeclareMathOperator{\sign}{sgn}
%% Stages
\newcommand{\stone}{\texttt{LO}}
\newcommand{\sttwo}{\texttt{LO+PS}}
\newcommand{\stthree}{\texttt{LO+PS+pT}}
\newcommand{\stfour}{\texttt{LO+PS+pT+Hadr.}}
\newcommand{\stfive}{\texttt{LO+PS+pT+Hadr.+MI}}
%% GeV
\newcommand{\gev}[1]{\SI{#1}{\giga\electronvolt}}
\def\iu{\ensuremath{\mathrm{i}}}
\def\i{\iu}
\def\id{\ensuremath{\mathbb{1}}}
\def\RR{\ensuremath{\mathbb{R}}}
\def\CC{\ensuremath{\mathbb{C}}}
% fixme
\newcommand{\fixme}[1]{\textbf{\textcolor{red}{FIXME:~#1}}}
% HOPS/NMQSD
\def\sys{\ensuremath{\mathrm{S}}}
\def\bath{\ensuremath{\mathrm{B}}}
\def\inter{\ensuremath{\mathrm{I}}}
\def\nth{\ensuremath{^{(n)}}}

View file

@ -3,14 +3,13 @@
captions=nooneline,captions=tableabove,english,DIV=16,numbers=noenddot,final]{scrartcl}
\usepackage{../../hirostyle}
\usepackage{../../hiromacros}
\usepackage{stackengine}
\synctex=1
\title{HOPS Tweaks}
\author{Valentin Link, Kai Mueller, Valentin Boettcher}
\date{\today}
\newcommand{\mat}[1]{\ensuremath{{\underline{\vb{#1}}}}}
\def\kmat{{\mat{k}}}
\begin{document}
\maketitle
\tableofcontents

View file

@ -68,7 +68,7 @@ the form
\end{equation}
where \(H_\sys\) is the (possibly time dependent) system Hamiltonian,
\(H_B\nth =_λω_λ\nth a_λ^{(n),†}a_λ\nth\),
\(B_n=_{λ}L_n^ g_λ\nth a_λ\nth\) and the \(L_n={(\vb{L})}_n\) are
\(B_n=_{λ} g_λ\nth a_λ\nth\) and the \(L_n={(\vb{L})}_n\) are
arbitrary operators in the system Hilbert space. This models a
situation where each bath couples with the system through exactly one
spectral density and is therefore not fully general.
@ -218,9 +218,9 @@ Using
where \({\qty(\mat{e}_{n,μ})}_{ij}=δ_{ni}δ_{μj}\) we find after some algebra
\begin{multline}
\label{eq:multihops}
\dot{ψ}^\kmat = \qty[-i H_\sys + \vb{L}\cdot\vb{η}^\ast -
\dot{ψ}^\kmat = \qty[-\iu H_\sys + \vb{L}\cdot\vb{η}^\ast -
_{n=1}^N∑_{μ=1}^{M_n}\kmat_{n,μ}W\nth_μ]ψ^\kmat \\+
i_{n=1}^N∑_{μ=1}^{M_n}\sqrt{G\nth_μ}\qty[\sqrt{\kmat_{n,μ}} L_^{\kmat -
\iu _{n=1}^N∑_{μ=1}^{M_n}\sqrt{G\nth_μ}\qty[\sqrt{\kmat_{n,μ}} L_^{\kmat -
\mat{e}_{n,μ}} + \sqrt{\qty(\kmat_{n,μ} + 1)} L^_^{\kmat +
\mat{e}_{n,μ}} ].
\end{multline}
@ -239,7 +239,7 @@ are bosonic Fock-states.
Now \cref{eq:multihops} becomes
\begin{equation}
\label{eq:fockhops}
_t\ket{Ψ} = \qty[-i H_\sys + \vb{L}\cdot\vb{η}^\ast -
_t\ket{Ψ} = \qty[-\iu H_\sys + \vb{L}\cdot\vb{η}^\ast -
_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ +
i_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^_{n,μ}L_n + b_{n,μ}L^_n)] \ket{Ψ}.
\iu _{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^_{n,μ}L_n + b_{n,μ}L^_n)] \ket{Ψ}.
\end{equation}