mirror of
https://github.com/vale981/master-thesis
synced 2025-03-06 02:21:38 -05:00
add 07 figures
This commit is contained in:
parent
72b798e448
commit
7f7fd6afab
3 changed files with 101223 additions and 326 deletions
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
After Width: | Height: | Size: 1.2 MiB |
|
@ -22,7 +22,7 @@ Init ray and silence stocproc.
|
|||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
| node_ip_address | : | 141.30.17.221 | raylet_ip_address | : | 141.30.17.221 | redis_address | : | hline | object_store_address | : | /tmp/ray/session_2022-04-26_13-48-04_707851_3943264/sockets/plasma_store | raylet_socket_name | : | /tmp/ray/session_2022-04-26_13-48-04_707851_3943264/sockets/raylet | webui_url | : | hline | session_dir | : | /tmp/ray/session_2022-04-26_13-48-04_707851_3943264 | metrics_export_port | : | 43755 | gcs_address | : | 141.30.17.221:63388 | address | : | 141.30.17.221:63388 | node_id | : | 8f7d9d5436973542899392aff75eb0d3d44de720533318bb5fd08fa0 |
|
||||
: RayContext(dashboard_url='', python_version='3.9.12', ray_version='1.12.0', ray_commit='f18fc31c7562990955556899090f8e8656b48d2d', address_info={'node_ip_address': '141.30.17.221', 'raylet_ip_address': '141.30.17.221', 'redis_address': None, 'object_store_address': '/tmp/ray/session_2022-05-11_19-35-36_875869_38685/sockets/plasma_store', 'raylet_socket_name': '/tmp/ray/session_2022-05-11_19-35-36_875869_38685/sockets/raylet', 'webui_url': '', 'session_dir': '/tmp/ray/session_2022-05-11_19-35-36_875869_38685', 'metrics_export_port': 59149, 'gcs_address': '141.30.17.221:61235', 'address': '141.30.17.221:61235', 'node_id': '2d5374c53f7c14cbfa36dff1f62247d1d327a1acfea62021878d000a'})
|
||||
|
||||
#+begin_src jupyter-python :results none :tangle scripts/integrate_slip.py
|
||||
from hops.util.logging_setup import logging_setup
|
||||
|
@ -43,8 +43,8 @@ We use a logspaced time to resolve the initial slip.
|
|||
|
||||
#+RESULTS:
|
||||
:RESULTS:
|
||||
| <matplotlib.lines.Line2D | at | 0x7f952bb1aac0> |
|
||||
[[file:./.ob-jupyter/93227274c92b68cad6a202f7cfa582dde1bf50f6.svg]]
|
||||
| <matplotlib.lines.Line2D | at | 0x7f664ff037c0> |
|
||||
[[file:./.ob-jupyter/c358a499ec28802a0a461028cbcf2f52eedcb151.svg]]
|
||||
:END:
|
||||
|
||||
* Convergence Woes
|
||||
|
@ -71,121 +71,17 @@ We could try the same with another truncation scheme.
|
|||
aux.integrate_multi(alt_tol_models, 400_000)
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
:RESULTS:
|
||||
: [INFO hops.core.integration 3943264] Choosing the nonlinear integrator.
|
||||
: [INFO hops.core.integration 3943264] Using 4 integrators.
|
||||
# [goto error]
|
||||
#+begin_example
|
||||
[0;31m---------------------------------------------------------------------------[0m
|
||||
[0;31mKeyboardInterrupt[0m Traceback (most recent call last)
|
||||
Input [0;32mIn [12][0m, in [0;36m<cell line: 1>[0;34m()[0m
|
||||
[0;32m----> 1[0m [43maux[49m[38;5;241;43m.[39;49m[43mintegrate_multi[49m[43m([49m[43malt_tol_models[49m[43m,[49m[43m [49m[38;5;241;43m400_000[39;49m[43m)[49m
|
||||
|
||||
File [0;32m~/src/two_qubit_model/hiro_models/model_auxiliary.py:81[0m, in [0;36mintegrate_multi[0;34m(models, *args, **kwargs)[0m
|
||||
[1;32m 74[0m [38;5;124;03m"""Integrate the hops equations for the ``models``.[39;00m
|
||||
[1;32m 75[0m [38;5;124;03mLike :any:`integrate` just for many models.[39;00m
|
||||
[1;32m 76[0m
|
||||
[1;32m 77[0m [38;5;124;03mA call to :any:`ray.init` may be required.[39;00m
|
||||
[1;32m 78[0m [38;5;124;03m"""[39;00m
|
||||
[1;32m 80[0m [38;5;28;01mfor[39;00m model [38;5;129;01min[39;00m models:
|
||||
[0;32m---> 81[0m [43mintegrate[49m[43m([49m[43mmodel[49m[43m,[49m[43m [49m[38;5;241;43m*[39;49m[43margs[49m[43m,[49m[43m [49m[38;5;241;43m*[39;49m[38;5;241;43m*[39;49m[43mkwargs[49m[43m)[49m
|
||||
|
||||
File [0;32m~/src/two_qubit_model/hiro_models/model_auxiliary.py:105[0m, in [0;36mintegrate[0;34m(model, n, data_path, clear_pd)[0m
|
||||
[1;32m 95[0m [38;5;66;03m# with model_db(data_path) as db:[39;00m
|
||||
[1;32m 96[0m [38;5;66;03m# if hash in db and "data" db[hash][39;00m
|
||||
[1;32m 98[0m supervisor [38;5;241m=[39m HOPSSupervisor(
|
||||
[1;32m 99[0m model[38;5;241m.[39mhops_config,
|
||||
[1;32m 100[0m n,
|
||||
[1;32m 101[0m data_path[38;5;241m=[39mdata_path,
|
||||
[1;32m 102[0m data_name[38;5;241m=[39m[38;5;28mhash[39m,
|
||||
[1;32m 103[0m )
|
||||
[0;32m--> 105[0m [43msupervisor[49m[38;5;241;43m.[39;49m[43mintegrate[49m[43m([49m[43mclear_pd[49m[43m)[49m
|
||||
[1;32m 107[0m [38;5;28;01mwith[39;00m supervisor[38;5;241m.[39mget_data([38;5;28;01mTrue[39;00m) [38;5;28;01mas[39;00m data:
|
||||
[1;32m 108[0m [38;5;28;01mwith[39;00m model_db(data_path) [38;5;28;01mas[39;00m db:
|
||||
|
||||
File [0;32m~/src/hops/hops/core/integration.py:1245[0m, in [0;36mHOPSSupervisor.integrate[0;34m(self, clear_pd)[0m
|
||||
[1;32m 1241[0m [38;5;28;01mraise[39;00m [38;5;167;01mRuntimeError[39;00m([38;5;124m"[39m[38;5;124mNo cpu available for integration![39m[38;5;124m"[39m)
|
||||
[1;32m 1243[0m log[38;5;241m.[39minfo([38;5;124mf[39m[38;5;124m"[39m[38;5;124mUsing [39m[38;5;132;01m{[39;00mnum_integrators[38;5;132;01m}[39;00m[38;5;124m integrators.[39m[38;5;124m"[39m)
|
||||
[0;32m-> 1245[0m indices [38;5;241m=[39m [38;5;28;43mself[39;49m[38;5;241;43m.[39;49m[43mget_job_args[49m[43m([49m[43mdata[49m[43m)[49m
|
||||
[1;32m 1247[0m integrator [38;5;241m=[39m ray[38;5;241m.[39mput([38;5;28mself[39m[38;5;241m.[39mactor(t, [38;5;28mself[39m[38;5;241m.[39mparams, data[38;5;241m.[39mresult_filter))
|
||||
[1;32m 1249[0m integration [38;5;241m=[39m tqdm(
|
||||
[1;32m 1250[0m total[38;5;241m=[39m[38;5;28mlen[39m(indices),
|
||||
[1;32m 1251[0m disable[38;5;241m=[39m[38;5;28mself[39m[38;5;241m.[39m_hide_progress,
|
||||
[0;32m (...)[0m
|
||||
[1;32m 1254[0m mininterval[38;5;241m=[39m[38;5;241m1[39m,
|
||||
[1;32m 1255[0m )
|
||||
|
||||
File [0;32m~/src/hops/hops/core/integration.py:1150[0m, in [0;36mHOPSSupervisor.get_job_args[0;34m(self, data)[0m
|
||||
[1;32m 1143[0m [38;5;124;03m"""[39;00m
|
||||
[1;32m 1144[0m [38;5;124;03m:returns: A list of argument tuples for[39;00m
|
||||
[1;32m 1145[0m [38;5;124;03m :any:`hops.core.integration.HOPSActor.integrate`[39;00m
|
||||
[1;32m 1146[0m [38;5;124;03m that corresponds to outstanding jobs.[39;00m
|
||||
[1;32m 1147[0m [38;5;124;03m"""[39;00m
|
||||
[1;32m 1149[0m seeds [38;5;241m=[39m [38;5;28mself[39m[38;5;241m.[39mseeds
|
||||
[0;32m-> 1150[0m args [38;5;241m=[39m [
|
||||
[1;32m 1151[0m ([38;5;28mint[39m(seeds[index]), index)
|
||||
[1;32m 1152[0m [38;5;28;01mfor[39;00m index [38;5;129;01min[39;00m [38;5;28mrange[39m(
|
||||
[1;32m 1153[0m [38;5;28mself[39m[38;5;241m.[39mmin_sample_index,
|
||||
[1;32m 1154[0m [38;5;28mself[39m[38;5;241m.[39mmin_sample_index [38;5;241m+[39m [38;5;28mself[39m[38;5;241m.[39mnumber_of_samples,
|
||||
[1;32m 1155[0m )
|
||||
[1;32m 1156[0m [38;5;28;01mif[39;00m [38;5;129;01mnot[39;00m data[38;5;241m.[39mhas_sample(idx[38;5;241m=[39mindex)
|
||||
[1;32m 1157[0m ]
|
||||
[1;32m 1159[0m log[38;5;241m.[39minfo([38;5;124mf[39m[38;5;124m"[39m[38;5;124mSome [39m[38;5;132;01m{[39;00m[38;5;28mlen[39m(args)[38;5;132;01m}[39;00m[38;5;124m trajectories have to be integrated.[39m[38;5;124m"[39m)
|
||||
[1;32m 1160[0m log[38;5;241m.[39mdebug([38;5;124mf[39m[38;5;124m"[39m[38;5;124mTrajectories to be integrated: %s[39m[38;5;124m"[39m, args)
|
||||
|
||||
File [0;32m~/src/hops/hops/core/integration.py:1156[0m, in [0;36m<listcomp>[0;34m(.0)[0m
|
||||
[1;32m 1143[0m [38;5;124;03m"""[39;00m
|
||||
[1;32m 1144[0m [38;5;124;03m:returns: A list of argument tuples for[39;00m
|
||||
[1;32m 1145[0m [38;5;124;03m :any:`hops.core.integration.HOPSActor.integrate`[39;00m
|
||||
[1;32m 1146[0m [38;5;124;03m that corresponds to outstanding jobs.[39;00m
|
||||
[1;32m 1147[0m [38;5;124;03m"""[39;00m
|
||||
[1;32m 1149[0m seeds [38;5;241m=[39m [38;5;28mself[39m[38;5;241m.[39mseeds
|
||||
[1;32m 1150[0m args [38;5;241m=[39m [
|
||||
[1;32m 1151[0m ([38;5;28mint[39m(seeds[index]), index)
|
||||
[1;32m 1152[0m [38;5;28;01mfor[39;00m index [38;5;129;01min[39;00m [38;5;28mrange[39m(
|
||||
[1;32m 1153[0m [38;5;28mself[39m[38;5;241m.[39mmin_sample_index,
|
||||
[1;32m 1154[0m [38;5;28mself[39m[38;5;241m.[39mmin_sample_index [38;5;241m+[39m [38;5;28mself[39m[38;5;241m.[39mnumber_of_samples,
|
||||
[1;32m 1155[0m )
|
||||
[0;32m-> 1156[0m [38;5;28;01mif[39;00m [38;5;129;01mnot[39;00m [43mdata[49m[38;5;241;43m.[39;49m[43mhas_sample[49m[43m([49m[43midx[49m[38;5;241;43m=[39;49m[43mindex[49m[43m)[49m
|
||||
[1;32m 1157[0m ]
|
||||
[1;32m 1159[0m log[38;5;241m.[39minfo([38;5;124mf[39m[38;5;124m"[39m[38;5;124mSome [39m[38;5;132;01m{[39;00m[38;5;28mlen[39m(args)[38;5;132;01m}[39;00m[38;5;124m trajectories have to be integrated.[39m[38;5;124m"[39m)
|
||||
[1;32m 1160[0m log[38;5;241m.[39mdebug([38;5;124mf[39m[38;5;124m"[39m[38;5;124mTrajectories to be integrated: %s[39m[38;5;124m"[39m, args)
|
||||
|
||||
File [0;32m~/src/hops/hops/core/hierarchy_data.py:744[0m, in [0;36mHIData.has_sample[0;34m(self, idx)[0m
|
||||
[1;32m 741[0m [38;5;124;03m"""Returns whether the sample with the index ``idx`` has been[39;00m
|
||||
[1;32m 742[0m [38;5;124;03mprocessed."""[39;00m
|
||||
[1;32m 743[0m [38;5;28;01mif[39;00m idx [38;5;241m<[39m [38;5;28mself[39m[38;5;241m.[39m_idx_cnt:
|
||||
[0;32m--> 744[0m [38;5;28;01mreturn[39;00m [38;5;28mbool[39m([38;5;28;43mself[39;49m[38;5;241;43m.[39;49m[43mtracker[49m[43m[[49m[43midx[49m[43m][49m)
|
||||
[1;32m 745[0m [38;5;28;01melse[39;00m:
|
||||
[1;32m 746[0m [38;5;28;01mreturn[39;00m [38;5;28;01mFalse[39;00m
|
||||
|
||||
File [0;32mh5py/_objects.pyx:54[0m, in [0;36mh5py._objects.with_phil.wrapper[0;34m()[0m
|
||||
|
||||
File [0;32mh5py/_objects.pyx:55[0m, in [0;36mh5py._objects.with_phil.wrapper[0;34m()[0m
|
||||
|
||||
File [0;32m/nix/store/v8al73piyplb4zsr88jnspqc62njjpxq-python3-3.9.10-env/lib/python3.9/site-packages/h5py/_hl/dataset.py:788[0m, in [0;36mDataset.__getitem__[0;34m(self, args, new_dtype)[0m
|
||||
[1;32m 785[0m [38;5;28;01mif[39;00m selection[38;5;241m.[39mnselect [38;5;241m==[39m [38;5;241m0[39m:
|
||||
[1;32m 786[0m [38;5;28;01mreturn[39;00m numpy[38;5;241m.[39mndarray(selection[38;5;241m.[39marray_shape, dtype[38;5;241m=[39mnew_dtype)
|
||||
[0;32m--> 788[0m arr [38;5;241m=[39m [43mnumpy[49m[38;5;241;43m.[39;49m[43mndarray[49m[43m([49m[43mselection[49m[38;5;241;43m.[39;49m[43marray_shape[49m[43m,[49m[43m [49m[43mnew_dtype[49m[43m,[49m[43m [49m[43morder[49m[38;5;241;43m=[39;49m[38;5;124;43m'[39;49m[38;5;124;43mC[39;49m[38;5;124;43m'[39;49m[43m)[49m
|
||||
[1;32m 790[0m [38;5;66;03m# Perform the actual read[39;00m
|
||||
[1;32m 791[0m mspace [38;5;241m=[39m h5s[38;5;241m.[39mcreate_simple(selection[38;5;241m.[39mmshape)
|
||||
|
||||
[0;31mKeyboardInterrupt[0m:
|
||||
#+end_example
|
||||
:END:
|
||||
|
||||
|
||||
#+begin_src jupyter-python :results none :tangle scripts/integrate_slip.py
|
||||
ensmeble_arg = dict(
|
||||
every=1000,
|
||||
chunk_size=5_000,
|
||||
chunk_size=500,
|
||||
)
|
||||
#+end_src
|
||||
|
||||
#+begin_src jupyter-python :tangle scripts/integrate_slip.py
|
||||
plot_interaction_consistency(
|
||||
alt_tol_models[:1],
|
||||
alt_tol_models,
|
||||
# alt_tol_models[0],
|
||||
label_fn=lambda m: fr"stocproc=$10^{{{np.log10(m.driving_process_tolerance.integration):.0f}}}$",
|
||||
,**ensmeble_arg
|
||||
|
@ -194,11 +90,8 @@ We could try the same with another truncation scheme.
|
|||
|
||||
#+RESULTS:
|
||||
:RESULTS:
|
||||
: Loading: 0% 0/80 [00:05<?, ?it/s]
|
||||
:
|
||||
: KeyboardInterrupt
|
||||
:
|
||||
[[file:./.ob-jupyter/a73a65aeea47f382c5845aaa1378af12f58242e5.svg]]
|
||||
| <Figure | size | 432x288 | with | 1 | Axes> | <AxesSubplot:xlabel= | $τ$ | ylabel= | $\langle H_\mathrm{I}\rangle$ | > |
|
||||
[[file:./.ob-jupyter/4d18e7c030d93fef8c85f72b9b1a5a13b645aa66.svg]]
|
||||
:END:
|
||||
|
||||
#+begin_src jupyter-python
|
||||
|
@ -210,89 +103,24 @@ We could try the same with another truncation scheme.
|
|||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
:RESULTS:
|
||||
# [goto error]
|
||||
#+begin_example
|
||||
[0;31m---------------------------------------------------------------------------[0m
|
||||
[0;31mValueError[0m Traceback (most recent call last)
|
||||
Input [0;32mIn [80][0m, in [0;36m<cell line: 2>[0;34m()[0m
|
||||
[1;32m 2[0m [38;5;28;01mfor[39;00m model, data [38;5;129;01min[39;00m aux[38;5;241m.[39mmodel_data_iterator(alt_tol_models[:[38;5;241m3[39m]):
|
||||
[1;32m 3[0m bath [38;5;241m=[39m model[38;5;241m.[39mbath_energy_flow(data, [38;5;241m*[39m[38;5;241m*[39mensmeble_arg)
|
||||
[0;32m----> 4[0m [43mfs[49m[38;5;241;43m.[39;49m[43mplot_with_σ[49m[43m([49m[43mmodel[49m[38;5;241;43m.[39;49m[43mt[49m[43m,[49m[43m [49m[43mbath[49m[43m,[49m[43m [49m[43mbath[49m[38;5;241;43m=[39;49m[38;5;241;43m0[39;49m[43m,[49m[43m [49m[43max[49m[38;5;241;43m=[39;49m[43max[49m[43m)[49m
|
||||
|
||||
File [0;32m~/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/07_one_bath_systematics/figsaver.py:130[0m, in [0;36mwrap_plot.<locals>.wrapped[0;34m(ax, setup_function, *args, **kwargs)[0m
|
||||
[1;32m 127[0m [38;5;28;01mif[39;00m [38;5;129;01mnot[39;00m ax:
|
||||
[1;32m 128[0m fig, ax [38;5;241m=[39m setup_function()
|
||||
[0;32m--> 130[0m ret_val [38;5;241m=[39m [43mf[49m[43m([49m[38;5;241;43m*[39;49m[43margs[49m[43m,[49m[43m [49m[43max[49m[38;5;241;43m=[39;49m[43max[49m[43m,[49m[43m [49m[38;5;241;43m*[39;49m[38;5;241;43m*[39;49m[43mkwargs[49m[43m)[49m
|
||||
[1;32m 131[0m [38;5;28;01mreturn[39;00m (fig, ax, ret_val) [38;5;28;01mif[39;00m ret_val [38;5;28;01melse[39;00m (fig, ax)
|
||||
|
||||
File [0;32m~/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/07_one_bath_systematics/figsaver.py:254[0m, in [0;36mplot_with_σ[0;34m(x, y, ax, transform, bath, **kwargs)[0m
|
||||
[1;32m 251[0m err [38;5;241m=[39m (y[38;5;241m.[39mσ[bath] [38;5;28;01mif[39;00m bath [38;5;129;01mis[39;00m [38;5;129;01mnot[39;00m [38;5;28;01mNone[39;00m [38;5;28;01melse[39;00m y[38;5;241m.[39mσ)[38;5;241m.[39mreal
|
||||
[1;32m 252[0m y_final [38;5;241m=[39m transform(y[38;5;241m.[39mvalue[bath] [38;5;28;01mif[39;00m bath [38;5;129;01mis[39;00m [38;5;129;01mnot[39;00m [38;5;28;01mNone[39;00m [38;5;28;01melse[39;00m y[38;5;241m.[39mvalue)
|
||||
[0;32m--> 254[0m [38;5;28;01mreturn[39;00m [43mfancy_error[49m[43m([49m[43mx[49m[43m,[49m[43m [49m[43my_final[49m[43m,[49m[43m [49m[43merr[49m[43m,[49m[43m [49m[43max[49m[38;5;241;43m=[39;49m[43max[49m[43m,[49m[43m [49m[38;5;241;43m*[39;49m[38;5;241;43m*[39;49m[43mkwargs[49m[43m)[49m
|
||||
|
||||
File [0;32m~/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/07_one_bath_systematics/figsaver.py:232[0m, in [0;36mfancy_error[0;34m(x, y, err, ax, **kwargs)[0m
|
||||
[1;32m 231[0m [38;5;28;01mdef[39;00m [38;5;21mfancy_error[39m(x, y, err, ax[38;5;241m=[39m[38;5;28;01mNone[39;00m, [38;5;241m*[39m[38;5;241m*[39mkwargs):
|
||||
[0;32m--> 232[0m line [38;5;241m=[39m [43max[49m[38;5;241;43m.[39;49m[43mplot[49m[43m([49m
|
||||
[1;32m 233[0m [43m [49m[43mx[49m[43m,[49m
|
||||
[1;32m 234[0m [43m [49m[43my[49m[43m,[49m
|
||||
[1;32m 235[0m [43m [49m[38;5;241;43m*[39;49m[38;5;241;43m*[39;49m[43mkwargs[49m[43m,[49m
|
||||
[1;32m 236[0m [43m [49m[43m)[49m
|
||||
[1;32m 238[0m err [38;5;241m=[39m ax[38;5;241m.[39mfill_between(
|
||||
[1;32m 239[0m x,
|
||||
[1;32m 240[0m y [38;5;241m+[39m err,
|
||||
[0;32m (...)[0m
|
||||
[1;32m 243[0m alpha[38;5;241m=[39m[38;5;241m0.5[39m,
|
||||
[1;32m 244[0m )
|
||||
[1;32m 246[0m [38;5;28;01mreturn[39;00m line, err
|
||||
|
||||
File [0;32m/nix/store/v8al73piyplb4zsr88jnspqc62njjpxq-python3-3.9.10-env/lib/python3.9/site-packages/matplotlib/axes/_axes.py:1632[0m, in [0;36mAxes.plot[0;34m(self, scalex, scaley, data, *args, **kwargs)[0m
|
||||
[1;32m 1390[0m [38;5;124;03m"""[39;00m
|
||||
[1;32m 1391[0m [38;5;124;03mPlot y versus x as lines and/or markers.[39;00m
|
||||
[1;32m 1392[0m
|
||||
[0;32m (...)[0m
|
||||
[1;32m 1629[0m [38;5;124;03m(``'green'``) or hex strings (``'#008000'``).[39;00m
|
||||
[1;32m 1630[0m [38;5;124;03m"""[39;00m
|
||||
[1;32m 1631[0m kwargs [38;5;241m=[39m cbook[38;5;241m.[39mnormalize_kwargs(kwargs, mlines[38;5;241m.[39mLine2D)
|
||||
[0;32m-> 1632[0m lines [38;5;241m=[39m [[38;5;241m*[39m[38;5;28mself[39m[38;5;241m.[39m_get_lines([38;5;241m*[39margs, data[38;5;241m=[39mdata, [38;5;241m*[39m[38;5;241m*[39mkwargs)]
|
||||
[1;32m 1633[0m [38;5;28;01mfor[39;00m line [38;5;129;01min[39;00m lines:
|
||||
[1;32m 1634[0m [38;5;28mself[39m[38;5;241m.[39madd_line(line)
|
||||
|
||||
File [0;32m/nix/store/v8al73piyplb4zsr88jnspqc62njjpxq-python3-3.9.10-env/lib/python3.9/site-packages/matplotlib/axes/_base.py:312[0m, in [0;36m_process_plot_var_args.__call__[0;34m(self, data, *args, **kwargs)[0m
|
||||
[1;32m 310[0m this [38;5;241m+[39m[38;5;241m=[39m args[[38;5;241m0[39m],
|
||||
[1;32m 311[0m args [38;5;241m=[39m args[[38;5;241m1[39m:]
|
||||
[0;32m--> 312[0m [38;5;28;01myield from[39;00m [38;5;28;43mself[39;49m[38;5;241;43m.[39;49m[43m_plot_args[49m[43m([49m[43mthis[49m[43m,[49m[43m [49m[43mkwargs[49m[43m)[49m
|
||||
|
||||
File [0;32m/nix/store/v8al73piyplb4zsr88jnspqc62njjpxq-python3-3.9.10-env/lib/python3.9/site-packages/matplotlib/axes/_base.py:498[0m, in [0;36m_process_plot_var_args._plot_args[0;34m(self, tup, kwargs, return_kwargs)[0m
|
||||
[1;32m 495[0m [38;5;28mself[39m[38;5;241m.[39maxes[38;5;241m.[39myaxis[38;5;241m.[39mupdate_units(y)
|
||||
[1;32m 497[0m [38;5;28;01mif[39;00m x[38;5;241m.[39mshape[[38;5;241m0[39m] [38;5;241m!=[39m y[38;5;241m.[39mshape[[38;5;241m0[39m]:
|
||||
[0;32m--> 498[0m [38;5;28;01mraise[39;00m [38;5;167;01mValueError[39;00m([38;5;124mf[39m[38;5;124m"[39m[38;5;124mx and y must have same first dimension, but [39m[38;5;124m"[39m
|
||||
[1;32m 499[0m [38;5;124mf[39m[38;5;124m"[39m[38;5;124mhave shapes [39m[38;5;132;01m{[39;00mx[38;5;241m.[39mshape[38;5;132;01m}[39;00m[38;5;124m and [39m[38;5;132;01m{[39;00my[38;5;241m.[39mshape[38;5;132;01m}[39;00m[38;5;124m"[39m)
|
||||
[1;32m 500[0m [38;5;28;01mif[39;00m x[38;5;241m.[39mndim [38;5;241m>[39m [38;5;241m2[39m [38;5;129;01mor[39;00m y[38;5;241m.[39mndim [38;5;241m>[39m [38;5;241m2[39m:
|
||||
[1;32m 501[0m [38;5;28;01mraise[39;00m [38;5;167;01mValueError[39;00m([38;5;124mf[39m[38;5;124m"[39m[38;5;124mx and y can be no greater than 2D, but have [39m[38;5;124m"[39m
|
||||
[1;32m 502[0m [38;5;124mf[39m[38;5;124m"[39m[38;5;124mshapes [39m[38;5;132;01m{[39;00mx[38;5;241m.[39mshape[38;5;132;01m}[39;00m[38;5;124m and [39m[38;5;132;01m{[39;00my[38;5;241m.[39mshape[38;5;132;01m}[39;00m[38;5;124m"[39m)
|
||||
|
||||
[0;31mValueError[0m: x and y must have same first dimension, but have shapes (500,) and (1,)
|
||||
#+end_example
|
||||
[[file:./.ob-jupyter/a2038ed241dfd21af3078c0cbd39629470b58a56.svg]]
|
||||
:END:
|
||||
[[file:./.ob-jupyter/9cfb3b83095906621ff0e734eb15b48f529baeaa.svg]]
|
||||
|
||||
|
||||
#+begin_src jupyter-python
|
||||
plot_interaction_consistency_development(
|
||||
fig, ax = plot_interaction_consistency_development(
|
||||
alt_tol_models,
|
||||
alt_tol_models[0],
|
||||
label_fn=lambda m: fr"stocproc=$10^{{{np.log10(m.driving_process_tolerance.integration):.0f}}}$",
|
||||
,**ensmeble_arg
|
||||
)
|
||||
#plt.xscale("log")
|
||||
fig.set_size_inches(20,5)
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
:RESULTS:
|
||||
| <Figure | size | 432x288 | with | 1 | Axes> | <AxesSubplot:xlabel= | $N$ | ylabel= | Consistency [$\%$] | > |
|
||||
[[file:./.ob-jupyter/8b54936957f33d5895787c6f4c55f97f5af8381a.svg]]
|
||||
:END:
|
||||
[[file:./.ob-jupyter/dae34b73b4bcf0a4d2fc95ada6b8d81ed38a52a6.svg]]
|
||||
|
||||
Stocproc accuracy really modifies convernge.
|
||||
|
||||
** Cutoff
|
||||
#+begin_src jupyter-python :results none :tangle scripts/integrate_slip.py
|
||||
|
@ -388,13 +216,6 @@ We could try the same with another truncation scheme.
|
|||
#+end_example
|
||||
:END:
|
||||
|
||||
#+begin_src jupyter-python :results none :tangle scripts/integrate_slip.py
|
||||
ensmeble_arg = dict(
|
||||
every=1000,
|
||||
chunk_size=1000,
|
||||
)
|
||||
#+end_src
|
||||
|
||||
#+begin_src jupyter-python :tangle scripts/integrate_slip.py
|
||||
plot_interaction_consistency(
|
||||
k_models,
|
||||
|
@ -406,134 +227,8 @@ We could try the same with another truncation scheme.
|
|||
|
||||
#+RESULTS:
|
||||
:RESULTS:
|
||||
: Loading: 0% 0/400 [00:03<?, ?it/s]
|
||||
# [goto error]
|
||||
#+begin_example
|
||||
[0;31m---------------------------------------------------------------------------[0m
|
||||
[0;31mKeyboardInterrupt[0m Traceback (most recent call last)
|
||||
Input [0;32mIn [10][0m, in [0;36m<cell line: 1>[0;34m()[0m
|
||||
[0;32m----> 1[0m [43mplot_interaction_consistency[49m[43m([49m
|
||||
[1;32m 2[0m [43m [49m[43mk_models[49m[43m,[49m
|
||||
[1;32m 3[0m [43m [49m[38;5;66;43;03m#k_models[-1],[39;49;00m
|
||||
[1;32m 4[0m [43m [49m[43mlabel_fn[49m[38;5;241;43m=[39;49m[38;5;28;43;01mlambda[39;49;00m[43m [49m[43mm[49m[43m:[49m[43m [49m[38;5;124;43mfr[39;49m[38;5;124;43m"[39;49m[38;5;124;43mk=$[39;49m[38;5;132;43;01m{[39;49;00m[43mm[49m[38;5;241;43m.[39;49m[43mk_max[49m[38;5;132;43;01m}[39;49;00m[38;5;124;43m$[39;49m[38;5;124;43m"[39;49m[43m,[49m
|
||||
[1;32m 5[0m [43m [49m[38;5;241;43m*[39;49m[38;5;241;43m*[39;49m[43mensmeble_arg[49m
|
||||
[1;32m 6[0m [43m [49m[43m)[49m
|
||||
|
||||
File [0;32m~/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/07_one_bath_systematics/figsaver.py:317[0m, in [0;36mplot_interaction_consistency[0;34m(models, reference, label_fn, **kwargs)[0m
|
||||
[1;32m 315[0m [38;5;28;01mfor[39;00m model [38;5;129;01min[39;00m models:
|
||||
[1;32m 316[0m [38;5;28;01mwith[39;00m aux[38;5;241m.[39mget_data(model) [38;5;28;01mas[39;00m data:
|
||||
[0;32m--> 317[0m energy [38;5;241m=[39m [43mmodel[49m[38;5;241;43m.[39;49m[43minteraction_energy[49m[43m([49m[43mdata[49m[43m,[49m[43m [49m[38;5;241;43m*[39;49m[38;5;241;43m*[39;49m[43mkwargs[49m[43m)[49m
|
||||
[1;32m 318[0m interaction_ref [38;5;241m=[39m model[38;5;241m.[39minteraction_energy_from_conservation(data, [38;5;241m*[39m[38;5;241m*[39mkwargs)
|
||||
[1;32m 319[0m diff [38;5;241m=[39m [38;5;28mabs[39m(interaction_ref [38;5;241m-[39m energy)
|
||||
|
||||
File [0;32m~/src/two_qubit_model/hiro_models/model_base.py:310[0m, in [0;36mModel.interaction_energy[0;34m(self, data, **kwargs)[0m
|
||||
[1;32m 299[0m [38;5;124;03m"""Calculates interaction energy from the hierarchy data[39;00m
|
||||
[1;32m 300[0m [38;5;124;03m``data``.[39;00m
|
||||
[1;32m 301[0m
|
||||
[0;32m (...)[0m
|
||||
[1;32m 305[0m [38;5;124;03m:returns: See :any:`hopsflow.util.interaction_energy_ensemble`.[39;00m
|
||||
[1;32m 306[0m [38;5;124;03m"""[39;00m
|
||||
[1;32m 308[0m N, kwargs [38;5;241m=[39m _get_N_kwargs(kwargs, data)
|
||||
[0;32m--> 310[0m [38;5;28;01mreturn[39;00m [43mhopsflow[49m[38;5;241;43m.[39;49m[43mhopsflow[49m[38;5;241;43m.[39;49m[43minteraction_energy_ensemble[49m[43m([49m
|
||||
[1;32m 311[0m [43m [49m[43mdata[49m[38;5;241;43m.[39;49m[43mvalid_sample_iterator[49m[43m([49m[43mdata[49m[38;5;241;43m.[39;49m[43mstoc_traj[49m[43m)[49m[43m,[49m[43m [49m[38;5;66;43;03m# type: ignore[39;49;00m
|
||||
[1;32m 312[0m [43m [49m[43mdata[49m[38;5;241;43m.[39;49m[43mvalid_sample_iterator[49m[43m([49m[43mdata[49m[38;5;241;43m.[39;49m[43maux_states[49m[43m)[49m[43m,[49m[43m [49m[38;5;66;43;03m# type: ignore[39;49;00m
|
||||
[1;32m 313[0m [43m [49m[38;5;28;43mself[39;49m[38;5;241;43m.[39;49m[43mhopsflow_system[49m[43m,[49m
|
||||
[1;32m 314[0m [43m [49m[43m([49m[43mdata[49m[38;5;241;43m.[39;49m[43mvalid_sample_iterator[49m[43m([49m[43mdata[49m[38;5;241;43m.[39;49m[43mrng_seed[49m[43m)[49m[43m,[49m[43m [49m[38;5;28;43mself[39;49m[38;5;241;43m.[39;49m[43mhopsflow_therm[49m[43m([49m[43mdata[49m[38;5;241;43m.[39;49m[43mtime[49m[43m[[49m[43m:[49m[43m][49m[43m)[49m[43m)[49m[43m,[49m[43m [49m[38;5;66;43;03m# type: ignore[39;49;00m
|
||||
[1;32m 315[0m [43m [49m[43mN[49m[38;5;241;43m=[39;49m[43mN[49m[43m,[49m
|
||||
[1;32m 316[0m [43m [49m[43msave[49m[38;5;241;43m=[39;49m[38;5;124;43mf[39;49m[38;5;124;43m"[39;49m[38;5;124;43minteraction_[39;49m[38;5;132;43;01m{[39;49;00m[38;5;28;43mself[39;49m[38;5;241;43m.[39;49m[43mhexhash[49m[38;5;132;43;01m}[39;49;00m[38;5;124;43m"[39;49m[43m,[49m
|
||||
[1;32m 317[0m [43m [49m[38;5;241;43m*[39;49m[38;5;241;43m*[39;49m[43mkwargs[49m[43m,[49m
|
||||
[1;32m 318[0m [43m[49m[43m)[49m
|
||||
|
||||
File [0;32m~/src/hopsflow/hopsflow/hopsflow.py:485[0m, in [0;36minteraction_energy_ensemble[0;34m(ψ_0s, ψ_1s, params, therm_args, **kwargs)[0m
|
||||
[1;32m 481[0m energy [38;5;241m+[39m[38;5;241m=[39m interaction_energy_therm(run, therm_run)
|
||||
[1;32m 483[0m [38;5;28;01mreturn[39;00m energy
|
||||
[0;32m--> 485[0m [38;5;28;01mreturn[39;00m [43mutil[49m[38;5;241;43m.[39;49m[43mensemble_mean[49m[43m([49m
|
||||
[1;32m 486[0m [43m [49m[38;5;28;43miter[39;49m[43m([49m[38;5;28;43mzip[39;49m[43m([49m[43mψ_0s[49m[43m,[49m[43m [49m[43mψ_1s[49m[43m,[49m[43m [49m[43mtherm_args[49m[43m[[49m[38;5;241;43m0[39;49m[43m][49m[43m)[49m[43m)[49m
|
||||
[1;32m 487[0m [43m [49m[38;5;28;43;01mif[39;49;00m[43m [49m[43mtherm_args[49m
|
||||
[1;32m 488[0m [43m [49m[38;5;28;43;01melse[39;49;00m[43m [49m[38;5;28;43miter[39;49m[43m([49m[38;5;28;43mzip[39;49m[43m([49m[43mψ_0s[49m[43m,[49m[43m [49m[43mψ_1s[49m[43m,[49m[43m [49m[43mitertools[49m[38;5;241;43m.[39;49m[43mrepeat[49m[43m([49m[38;5;241;43m0[39;49m[43m)[49m[43m)[49m[43m)[49m[43m,[49m
|
||||
[1;32m 489[0m [43m [49m[43minteraction_energy_task[49m[43m,[49m
|
||||
[1;32m 490[0m [43m [49m[38;5;241;43m*[39;49m[38;5;241;43m*[39;49m[43mkwargs[49m[43m,[49m
|
||||
[1;32m 491[0m [43m[49m[43m)[49m
|
||||
|
||||
File [0;32m~/src/hopsflow/hopsflow/util.py:655[0m, in [0;36mensemble_mean[0;34m(arg_iter, function, N, every, save, overwrite_cache, chunk_size)[0m
|
||||
[1;32m 651[0m [38;5;129m@ray[39m[38;5;241m.[39mremote
|
||||
[1;32m 652[0m [38;5;28;01mdef[39;00m [38;5;21mremote_function[39m(chunk: [38;5;28mtuple[39m):
|
||||
[1;32m 653[0m [38;5;28;01mreturn[39;00m [function(arg) [38;5;28;01mfor[39;00m arg [38;5;129;01min[39;00m chunk]
|
||||
[0;32m--> 655[0m handles [38;5;241m=[39m [
|
||||
[1;32m 656[0m remote_function[38;5;241m.[39mremote(chunk)
|
||||
[1;32m 657[0m [38;5;28;01mfor[39;00m chunk [38;5;129;01min[39;00m tqdm(
|
||||
[1;32m 658[0m _grouper(
|
||||
[1;32m 659[0m chunk_size, itertools[38;5;241m.[39mislice(arg_iter, [38;5;28;01mNone[39;00m, N [38;5;241m-[39m [38;5;241m1[39m [38;5;28;01mif[39;00m N [38;5;28;01melse[39;00m [38;5;28;01mNone[39;00m)
|
||||
[1;32m 660[0m ),
|
||||
[1;32m 661[0m total[38;5;241m=[39m[38;5;28mint[39m((N [38;5;241m-[39m [38;5;241m1[39m) [38;5;241m/[39m chunk_size [38;5;241m+[39m [38;5;241m1[39m) [38;5;28;01mif[39;00m N [38;5;129;01mis[39;00m [38;5;129;01mnot[39;00m [38;5;28;01mNone[39;00m [38;5;28;01melse[39;00m [38;5;28;01mNone[39;00m,
|
||||
[1;32m 662[0m desc[38;5;241m=[39m[38;5;124m"[39m[38;5;124mLoading[39m[38;5;124m"[39m,
|
||||
[1;32m 663[0m )
|
||||
[1;32m 664[0m ]
|
||||
[1;32m 666[0m progress [38;5;241m=[39m tqdm(total[38;5;241m=[39m[38;5;28mlen[39m(handles), desc[38;5;241m=[39m[38;5;124m"[39m[38;5;124mProcessing[39m[38;5;124m"[39m)
|
||||
[1;32m 668[0m [38;5;28;01mfor[39;00m ref [38;5;129;01min[39;00m handles:
|
||||
|
||||
File [0;32m~/src/hopsflow/hopsflow/util.py:655[0m, in [0;36m<listcomp>[0;34m(.0)[0m
|
||||
[1;32m 651[0m [38;5;129m@ray[39m[38;5;241m.[39mremote
|
||||
[1;32m 652[0m [38;5;28;01mdef[39;00m [38;5;21mremote_function[39m(chunk: [38;5;28mtuple[39m):
|
||||
[1;32m 653[0m [38;5;28;01mreturn[39;00m [function(arg) [38;5;28;01mfor[39;00m arg [38;5;129;01min[39;00m chunk]
|
||||
[0;32m--> 655[0m handles [38;5;241m=[39m [
|
||||
[1;32m 656[0m remote_function[38;5;241m.[39mremote(chunk)
|
||||
[1;32m 657[0m [38;5;28;01mfor[39;00m chunk [38;5;129;01min[39;00m tqdm(
|
||||
[1;32m 658[0m _grouper(
|
||||
[1;32m 659[0m chunk_size, itertools[38;5;241m.[39mislice(arg_iter, [38;5;28;01mNone[39;00m, N [38;5;241m-[39m [38;5;241m1[39m [38;5;28;01mif[39;00m N [38;5;28;01melse[39;00m [38;5;28;01mNone[39;00m)
|
||||
[1;32m 660[0m ),
|
||||
[1;32m 661[0m total[38;5;241m=[39m[38;5;28mint[39m((N [38;5;241m-[39m [38;5;241m1[39m) [38;5;241m/[39m chunk_size [38;5;241m+[39m [38;5;241m1[39m) [38;5;28;01mif[39;00m N [38;5;129;01mis[39;00m [38;5;129;01mnot[39;00m [38;5;28;01mNone[39;00m [38;5;28;01melse[39;00m [38;5;28;01mNone[39;00m,
|
||||
[1;32m 662[0m desc[38;5;241m=[39m[38;5;124m"[39m[38;5;124mLoading[39m[38;5;124m"[39m,
|
||||
[1;32m 663[0m )
|
||||
[1;32m 664[0m ]
|
||||
[1;32m 666[0m progress [38;5;241m=[39m tqdm(total[38;5;241m=[39m[38;5;28mlen[39m(handles), desc[38;5;241m=[39m[38;5;124m"[39m[38;5;124mProcessing[39m[38;5;124m"[39m)
|
||||
[1;32m 668[0m [38;5;28;01mfor[39;00m ref [38;5;129;01min[39;00m handles:
|
||||
|
||||
File [0;32m/nix/store/v8al73piyplb4zsr88jnspqc62njjpxq-python3-3.9.10-env/lib/python3.9/site-packages/tqdm/std.py:1195[0m, in [0;36mtqdm.__iter__[0;34m(self)[0m
|
||||
[1;32m 1192[0m time [38;5;241m=[39m [38;5;28mself[39m[38;5;241m.[39m_time
|
||||
[1;32m 1194[0m [38;5;28;01mtry[39;00m:
|
||||
[0;32m-> 1195[0m [38;5;28;01mfor[39;00m obj [38;5;129;01min[39;00m iterable:
|
||||
[1;32m 1196[0m [38;5;28;01myield[39;00m obj
|
||||
[1;32m 1197[0m [38;5;66;03m# Update and possibly print the progressbar.[39;00m
|
||||
[1;32m 1198[0m [38;5;66;03m# Note: does not call self.update(1) for speed optimisation.[39;00m
|
||||
|
||||
File [0;32m~/src/hopsflow/hopsflow/util.py:587[0m, in [0;36m_grouper[0;34m(n, iterable)[0m
|
||||
[1;32m 584[0m [38;5;124;03m"""Groups the iteartor into tuples of at most length ``n``."""[39;00m
|
||||
[1;32m 586[0m [38;5;28;01mwhile[39;00m [38;5;28;01mTrue[39;00m:
|
||||
[0;32m--> 587[0m chunk [38;5;241m=[39m [38;5;28;43mtuple[39;49m[43m([49m[43mitertools[49m[38;5;241;43m.[39;49m[43mislice[49m[43m([49m[43miterable[49m[43m,[49m[43m [49m[43mn[49m[43m)[49m[43m)[49m
|
||||
[1;32m 588[0m [38;5;28;01mif[39;00m [38;5;129;01mnot[39;00m chunk:
|
||||
[1;32m 589[0m [38;5;28;01mreturn[39;00m
|
||||
|
||||
File [0;32m~/src/hops/hops/core/hierarchy_data.py:1223[0m, in [0;36mHIData.valid_sample_iterator[0;34m(self, iterator)[0m
|
||||
[1;32m 1216[0m [38;5;28;01mdef[39;00m [38;5;21mvalid_sample_iterator[39m([38;5;28mself[39m, iterator: Iterator[T]) [38;5;241m-[39m[38;5;241m>[39m Iterator[T]:
|
||||
[1;32m 1217[0m [38;5;124;03m"""[39;00m
|
||||
[1;32m 1218[0m [38;5;124;03m Takes an ``iterator`` that yields a sequence of items related to[39;00m
|
||||
[1;32m 1219[0m [38;5;124;03m the sequence of samples and yields them if the sample is[39;00m
|
||||
[1;32m 1220[0m [38;5;124;03m actually present in the data.[39;00m
|
||||
[1;32m 1221[0m [38;5;124;03m """[39;00m
|
||||
[0;32m-> 1223[0m [38;5;28;01mfor[39;00m i, item [38;5;129;01min[39;00m [38;5;28menumerate[39m(iterator):
|
||||
[1;32m 1224[0m [38;5;28;01mif[39;00m [38;5;28mself[39m[38;5;241m.[39mhas_sample(i):
|
||||
[1;32m 1225[0m [38;5;28;01myield[39;00m item
|
||||
|
||||
File [0;32m/nix/store/v8al73piyplb4zsr88jnspqc62njjpxq-python3-3.9.10-env/lib/python3.9/site-packages/h5py/_hl/dataset.py:664[0m, in [0;36mDataset.__iter__[0;34m(self)[0m
|
||||
[1;32m 662[0m [38;5;28;01mraise[39;00m [38;5;167;01mTypeError[39;00m([38;5;124m"[39m[38;5;124mCan[39m[38;5;124m'[39m[38;5;124mt iterate over a scalar dataset[39m[38;5;124m"[39m)
|
||||
[1;32m 663[0m [38;5;28;01mfor[39;00m i [38;5;129;01min[39;00m [38;5;28mrange[39m(shape[[38;5;241m0[39m]):
|
||||
[0;32m--> 664[0m [38;5;28;01myield[39;00m [38;5;28;43mself[39;49m[43m[[49m[43mi[49m[43m][49m
|
||||
|
||||
File [0;32mh5py/_objects.pyx:54[0m, in [0;36mh5py._objects.with_phil.wrapper[0;34m()[0m
|
||||
|
||||
File [0;32mh5py/_objects.pyx:55[0m, in [0;36mh5py._objects.with_phil.wrapper[0;34m()[0m
|
||||
|
||||
File [0;32m/nix/store/v8al73piyplb4zsr88jnspqc62njjpxq-python3-3.9.10-env/lib/python3.9/site-packages/h5py/_hl/dataset.py:793[0m, in [0;36mDataset.__getitem__[0;34m(self, args, new_dtype)[0m
|
||||
[1;32m 791[0m mspace [38;5;241m=[39m h5s[38;5;241m.[39mcreate_simple(selection[38;5;241m.[39mmshape)
|
||||
[1;32m 792[0m fspace [38;5;241m=[39m selection[38;5;241m.[39mid
|
||||
[0;32m--> 793[0m [38;5;28;43mself[39;49m[38;5;241;43m.[39;49m[43mid[49m[38;5;241;43m.[39;49m[43mread[49m[43m([49m[43mmspace[49m[43m,[49m[43m [49m[43mfspace[49m[43m,[49m[43m [49m[43marr[49m[43m,[49m[43m [49m[43mmtype[49m[43m,[49m[43m [49m[43mdxpl[49m[38;5;241;43m=[39;49m[38;5;28;43mself[39;49m[38;5;241;43m.[39;49m[43m_dxpl[49m[43m)[49m
|
||||
[1;32m 795[0m [38;5;66;03m# Patch up the output for NumPy[39;00m
|
||||
[1;32m 796[0m [38;5;28;01mif[39;00m arr[38;5;241m.[39mshape [38;5;241m==[39m ():
|
||||
|
||||
[0;31mKeyboardInterrupt[0m:
|
||||
#+end_example
|
||||
[[file:./.ob-jupyter/d81cd0cee8f06820ba9fdad3107ae9833dcff026.svg]]
|
||||
| <Figure | size | 432x288 | with | 1 | Axes> | <AxesSubplot:xlabel= | $τ$ | ylabel= | $\langle H_\mathrm{I}\rangle$ | > |
|
||||
[[file:./.ob-jupyter/f594d6229b908607d0c38db3b06860a758679103.svg]]
|
||||
:END:
|
||||
|
||||
#+begin_src jupyter-python
|
||||
|
@ -546,11 +241,9 @@ We could try the same with another truncation scheme.
|
|||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:./.ob-jupyter/9e634499e8f3ff92f542cbfd461189dcca25ee31.svg]]
|
||||
[[file:./.ob-jupyter/ea78f4382a8b8edc415fa918b10305558ee5300d.svg]]
|
||||
|
||||
No cauchy sequence. HA LOL. This was a bug. Stil no cauchy.
|
||||
Interesting that consistency is that weird. We see the one ver square
|
||||
root development clearly.
|
||||
Ok this is interesting. For longer memory stocproc has to still more accurate it appears.
|
||||
|
||||
#+begin_src jupyter-python
|
||||
fig, ax = plt.subplots()
|
||||
|
@ -565,7 +258,7 @@ root development clearly.
|
|||
#+RESULTS:
|
||||
:RESULTS:
|
||||
| 0.0 | 1.0 |
|
||||
[[file:./.ob-jupyter/c0967591b335e645c36e304065600e883dcee7bf.svg]]
|
||||
[[file:./.ob-jupyter/4e42c5e70e08ea25036789b8c98a6e319f12fd2c.svg]]
|
||||
:END:
|
||||
|
||||
#+begin_src jupyter-python
|
||||
|
@ -576,7 +269,7 @@ root development clearly.
|
|||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
[[file:./.ob-jupyter/1b43b7b801fe70101b68e251547723a01c23dbfb.svg]]
|
||||
[[file:./.ob-jupyter/fbb339bd2e6b71d0b2e6af08d8d21c0a07e49358.svg]]
|
||||
|
||||
|
||||
* Initial Slip Cutoff Frequency
|
||||
|
|
Loading…
Add table
Reference in a new issue