more hops tweaks texed

This commit is contained in:
Valentin Boettcher 2022-02-22 14:15:20 +01:00
parent 602a15615e
commit 76b5b2df30
3 changed files with 196 additions and 0 deletions

View file

@ -169,3 +169,9 @@ labelformat=brace, position=top]{subcaption}
% fixme
\newcommand{\fixme}[1]{\textbf{\textcolor{red}{FIXME:~#1}}}
% HOPS/NMQSD
\def\sys{\ensuremath{\mathrm{S}}}
\def\bath{\ensuremath{\mathrm{B}}}
\def\inter{\ensuremath{\mathrm{I}}}
\def\nth{\ensuremath{^{(n)}}}

View file

@ -8,6 +8,9 @@ captions=nooneline,captions=tableabove,english,DIV=16,numbers=noenddot,final]{sc
\title{HOPS Tweaks}
\author{Valentin Link, Kai Mueller, Valentin Boettcher}
\date{\today}
\newcommand{\mat}[1]{\ensuremath{{\underline{\vb{#1}}}}}
\def\kmat{{\mat{k}}}
\begin{document}
\maketitle
\tableofcontents

View file

@ -56,3 +56,190 @@ These choices lead to an altered HOPS equation
\tilde{φ})}{\norm{\tilde{ψ}}^2}+\qty(1-\norm{\tilde{ψ}}^2)]\mqty(\tilde{ψ}\\
\tilde{φ}) + \mqty(F(\tilde{ψ},\tilde{φ}) \\ G(\tilde{ψ},\tilde{φ})).
\end{equation}
\section{Multiple Baths}
\label{sec:multibath}
We generalize the NMQSD and HOPS to \(N\) baths for Hamiltonians of
the form
\begin{equation}
\label{eq:multimodel}
H = H_\sys + ∑_{n=1}^N \qty[H_\bath\nth + \qty(L_n^†B_n + \hc)],
\end{equation}
where \(H_\sys\) is the (possibly time dependent) system Hamiltonian,
\(H_B\nth =_λω_λ\nth a_λ^{(n),†}a_λ\nth\),
\(B_n=_{λ}L_n^† g_λ\nth a_λ\nth\) and the \(L_n={(\vb{L})}_n\) are
arbitrary operators in the system Hilbert space. This models a
situation where each bath couples with the system through exactly one
spectral density and is therefore not fully general.
\subsection{NMQSD}
\label{sec:nmqsd}
Following the usual derivation of the NMQSD \cite{Diosi1998Mar}, we
switch to an interaction picture with respect to the \(H_\bath\)
leading to
\begin{equation}
\label{eq:multimodelint}
H(t) = H_\sys + ∑_{n=1}^N \qty[L_n^†B_n(t) + \hc],
\end{equation}
with \(B_n=_{λ}L_n^† g_λ\nth a_λ\nth\eu^{-\iu ω_λ\nth t}\).
We will discuss the zero temperature case. The finite temperature
methods generalize straight forwardly to multiple baths. Projecting
on a Bargmann (unnormalized) coherent state basis
\(\qty{\ket{\vb{z}^{(1)},\vb{z}^{(2)},\ldots}=
\ket{\underline{\vb{z}}}}\) of the baths
\begin{equation}
\label{eq:projected}
\ket{ψ(t)} = ∫∏_{n=1}^N{\qty(\frac{\dd{\vb{z}\nth}}{π^{N_n}}\eu^{-\abs{\vb{z}}^2})}\ket{ψ(t,\underline{\vb{z}}^\ast)}\ket{\underline{\vb{z}}},
\end{equation}
where \(N_n\) are the number of oscillators in each bath.
We define
\begin{equation}
\label{eq:processes}
η^\ast_n(t) = {\qty(\vb{η}^\ast_t)}_n= -\iu_λg_λ^{(n),\ast} z_λ^{(n),\ast}\eu^{\iu ω_λ\nth t}
\end{equation}
and using
\(\pdv{z_λ^{(n),\ast}}=\dd{s}\pdv{η^\ast_n(s)}{z_λ^{(n),\ast}}\fdv{η^\ast_n(s)}\)
we arrive at
\begin{equation}
\label{eq:multinmqsd}
__t(\vb{η}^\ast_t) = -\iu H ψ_t(\vb{η}^\ast_t) +
\vb{L}\cdot\vb{η}^\ast__t(\vb{η}^\ast_t) - ∑_{n=1}^N L_n^†∫_0^t\dd{s}α_n(t-s)\fdv{ψ_t(\vb{η}^\ast_t)}{η^\ast_n(s)},
\end{equation}
where \(α_n(t-s)= {\qty(\vb{α}(t-s))}_n=_λ\abs{g_λ\nth}^2\eu^{-\iu ω_λ\nth(t-s)}\) are the
zero temperature bath correlation functions. The equation
\cref{eq:multinmqsd} becomes the NMQSD by reinterpreting the
\(\vb{z}\nth\) as normal distributed complex random variables by
virtue of monte-carlo integration of \cref{eq:projected}. The
\(η^\ast_n(t)\) become homogeneous gaussian stochastic processes
defined through
\begin{equation}
\label{eq:processescorr}
\begin{aligned}
\mathcal{M}^\ast_n(t)) &=0, & \mathcal{M}_n(t)η_m(s)) &= 0,
& \mathcal{M}_n(t)η_m(s)^\ast) &= δ_{nm}α_n(t-s).
\end{aligned}
\end{equation}
\subsection{Nonlinear NMQSD}
\label{sec:nonlin}
For the derivation of the lonlinear theory, the characteristic
trajectories of the partial differential equation of motion of
the Husimi-function
\begin{equation}
\label{eq:husimi}
Q_t(\underline{\vb{z}}, \underline{\vb{z}}^\ast) =
\frac{\eu^{-\abs{{\underline{\vb{z}}}}^2}}{π^{_n N_n}}
\braket{ψ(t, {\underline{\vb{z}}})}{ψ(t, {\underline{\vb{z}}}^\ast)}
\end{equation}
have to be determined.
Using \(_{\underline{\vb{z}}}\ket{ψ(t, {\underline{\vb{z}}}^\ast)} =
0\) and \(_{\underline{\vb{z}}^\ast}\bra{ψ(t, {\underline{\vb{z}}})} =
0\) because \(\ket{ψ(t, {\underline{\vb{z}}}^\ast)}\) is holomorphic
we derive
\begin{equation}
\label{eq:husimimotion}
_tQ_t(\underline{\vb{z}}, \underline{\vb{z}}^\ast) = -i
_{n=1}^N\qty[∂_{z_λ^{(n), \ast}}\eu^{-\iu ω_λ\nth
t}\ev{L^_n}_tQ_t(\underline{\vb{z}}, \underline{\vb{z}}^\ast) - \cc],
\end{equation}
where \(\ev{L^_n}_t = \mel{ψ(t, {\underline{\vb{z}}})}{L^_n}{ψ(t,
{\underline{\vb{z}}}^\ast)} / \braket{ψ(t, {\underline{\vb{z}}})}{ψ(t, {\underline{\vb{z}}}^\ast)}\).
The characteristics of \cref{eq:husimimotion} obey the equations of
motion
\begin{equation}
\label{eq:characteristics}
\dot{z}^{(n),\ast}_λ = \iu g_λ\nth \eu^{-\iu ω_λ\nth t} \ev{L^_n}_t
\end{equation}
for the stochastic state labels.
The microscopic dynamics can in-turn be gathered into a shift of the
stochastic processes
\begin{equation}
\label{eq:procshift}
\tilde{η}_n^\ast(t) = η_n^\ast(t) + ∫_0^t\dd{s}α_n^\ast(t-s)\ev{L^_n}_s
\end{equation}
and we obtain the nonlinear NMQSD equation
\begin{multline}
\label{eq:multinmqsdnonlin}
__t(\tilde{\vb{η}}^\ast_t) = -\iu H ψ_t(\tilde{\vb{η}}^\ast_t) +
\vb{L}\cdot\tilde{\vb{η}}^\ast__t(\tilde{\vb{η}}^\ast_t) \\-
_{n=1}^N
\qty(L_n^†-\ev{L^_n}_t)∫_0^t\dd{s}α_n(t-s)\eval{\fdv{ψ_t(\tilde{\vb{η}}^\ast_t)}{η^\ast_n(s)}}_{\vb{η}^\ast(s)
= \vb{η}(\underline{\vb{z}}^\ast(t), s)}.
\end{multline}
The notation
\({\vb{η}^\ast(s) = \vb{η}(\underline{\vb{z}}^\ast(t), s)}\) means
that we replace the microscopic \(z_λ^{(n),\ast}\) in
\cref{eq:processes} with the shifted ones obeying
\cref{eq:characteristics} and evaluate the resulting function at \(s\).
This awkward construction can be remedied by the convolutionless
formulation. It plays no great role in the HOPS formalism.
\subsection{Multi Bath HOPS in Fock-Space Formulation}
\label{sec:multihops}
Following the usual derivation~\cite{RichardDiss} (but with a
different normalization) and using an exponential expansion of the
BCFs \(α_n(τ)=_{\mu}^{M_n}=G_μ\nth\eu^{-W_μ\nth τ}\), we define
\begin{equation}
\label{eq:dops}
D_μ\nth(t) \equiv_0^t\dd{s}\eu^{-W_μ\nth (t-s)}\fdv{η^\ast_n(s)}
\end{equation}
and
\begin{equation}
\label{eq:dops}
D^{\underline{\vb{k}}} \equiv
_{n=1}^N∏_{μ=1}^{M_n}
{\sqrt{\frac{\underline{\vb{k}}_{n,μ}!}{\qty(G\nth_μ)^{\underline{\vb{k}}_{n,μ}}}}
\frac{1}{i^{\underline{\vb{k}}_{n,μ}}}}\qty(D_μ\nth)^{\underline{\vb{k}}_{n,μ}},
\end{equation}
as well as
\begin{equation}
\label{eq:hierdef}
ψ^{\underline{\vb{k}}} \equiv D^{\underline{\vb{k}}}ψ.
\end{equation}
Using
\begin{equation}
\label{eq:commrelation}
[D^\kmat(t),η_n^\ast(t)] = \iu_{μ=1}^{M_n}
\sqrt{\kmat_{n,μ}G\nth_μ} D^{\kmat -
\mat{e}_{n,μ}}
\end{equation}
where \({\qty(\mat{e}_{n,μ})}_{ij}=δ_{ni}δ_{μj}\) we find after some algebra
\begin{multline}
\label{eq:multihops}
\dot{ψ}^\kmat = \qty[-i H_\sys + \vb{L}\cdot\vb{η}^\ast -
_{n=1}^N∑_{μ=1}^{M_n}\kmat_{n,μ}W\nth_μ]ψ^\kmat \\+
i∑_{n=1}^N∑_{μ=1}^{M_n}\sqrt{G\nth_μ}\qty[\sqrt{\kmat_{n,μ}} L_^{\kmat -
\mat{e}_{n,μ}} + \sqrt{\qty(\kmat_{n,μ} + 1)} L^_^{\kmat +
\mat{e}_{n,μ}} ].
\end{multline}
The HOPS equations \cref{eq:multihops} can also be rewritten in an
especially appealing form \cite{Gao2021Sep} if we embed the hierarchy
states into a larger Hilbert space using
\begin{equation}
\label{eq:fockpsi}
\ket{Ψ} = \sum_\kmat\ket{\psi^\kmat}\otimes \ket{\kmat}
\end{equation}
where
\(\ket{\kmat}=\bigotimes_{n=1}^N\bigotimes_{μ=1}^{N_n}\ket{\kmat_{n,μ}}\)
are bosonic Fock-states.
Now \cref{eq:multihops} becomes
\begin{equation}
\label{eq:fockhops}
_t\ket{Ψ} = \qty[-i H_\sys + \vb{L}\cdot\vb{η}^\ast -
_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ +
i∑_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^_{n,μ}L_n + b_{n,μ}L^_n)] \ket{Ψ}.
\end{equation}