mirror of
https://github.com/vale981/master-thesis
synced 2025-03-04 17:41:43 -05:00
more hops tweaks texed
This commit is contained in:
parent
602a15615e
commit
76b5b2df30
3 changed files with 196 additions and 0 deletions
|
@ -169,3 +169,9 @@ labelformat=brace, position=top]{subcaption}
|
|||
|
||||
% fixme
|
||||
\newcommand{\fixme}[1]{\textbf{\textcolor{red}{FIXME:~#1}}}
|
||||
|
||||
% HOPS/NMQSD
|
||||
\def\sys{\ensuremath{\mathrm{S}}}
|
||||
\def\bath{\ensuremath{\mathrm{B}}}
|
||||
\def\inter{\ensuremath{\mathrm{I}}}
|
||||
\def\nth{\ensuremath{^{(n)}}}
|
||||
|
|
|
@ -8,6 +8,9 @@ captions=nooneline,captions=tableabove,english,DIV=16,numbers=noenddot,final]{sc
|
|||
\title{HOPS Tweaks}
|
||||
\author{Valentin Link, Kai Mueller, Valentin Boettcher}
|
||||
\date{\today}
|
||||
|
||||
\newcommand{\mat}[1]{\ensuremath{{\underline{\vb{#1}}}}}
|
||||
\def\kmat{{\mat{k}}}
|
||||
\begin{document}
|
||||
\maketitle
|
||||
\tableofcontents
|
||||
|
|
|
@ -56,3 +56,190 @@ These choices lead to an altered HOPS equation
|
|||
\tilde{φ})}{\norm{\tilde{ψ}}^2}+\qty(1-\norm{\tilde{ψ}}^2)]\mqty(\tilde{ψ}\\
|
||||
\tilde{φ}) + \mqty(F(\tilde{ψ},\tilde{φ}) \\ G(\tilde{ψ},\tilde{φ})).
|
||||
\end{equation}
|
||||
|
||||
\section{Multiple Baths}
|
||||
\label{sec:multibath}
|
||||
|
||||
We generalize the NMQSD and HOPS to \(N\) baths for Hamiltonians of
|
||||
the form
|
||||
\begin{equation}
|
||||
\label{eq:multimodel}
|
||||
H = H_\sys + ∑_{n=1}^N \qty[H_\bath\nth + \qty(L_n^†B_n + \hc)],
|
||||
\end{equation}
|
||||
where \(H_\sys\) is the (possibly time dependent) system Hamiltonian,
|
||||
\(H_B\nth = ∑_λω_λ\nth a_λ^{(n),†}a_λ\nth\),
|
||||
\(B_n=∑_{λ}L_n^† g_λ\nth a_λ\nth\) and the \(L_n={(\vb{L})}_n\) are
|
||||
arbitrary operators in the system Hilbert space. This models a
|
||||
situation where each bath couples with the system through exactly one
|
||||
spectral density and is therefore not fully general.
|
||||
|
||||
\subsection{NMQSD}
|
||||
\label{sec:nmqsd}
|
||||
|
||||
Following the usual derivation of the NMQSD \cite{Diosi1998Mar}, we
|
||||
switch to an interaction picture with respect to the \(H_\bath\)
|
||||
leading to
|
||||
\begin{equation}
|
||||
\label{eq:multimodelint}
|
||||
H(t) = H_\sys + ∑_{n=1}^N \qty[L_n^†B_n(t) + \hc],
|
||||
\end{equation}
|
||||
with \(B_n=∑_{λ}L_n^† g_λ\nth a_λ\nth\eu^{-\iu ω_λ\nth t}\).
|
||||
|
||||
We will discuss the zero temperature case. The finite temperature
|
||||
methods generalize straight forwardly to multiple baths. Projecting
|
||||
on a Bargmann (unnormalized) coherent state basis
|
||||
\(\qty{\ket{\vb{z}^{(1)},\vb{z}^{(2)},\ldots}=
|
||||
\ket{\underline{\vb{z}}}}\) of the baths
|
||||
\begin{equation}
|
||||
\label{eq:projected}
|
||||
\ket{ψ(t)} = ∫∏_{n=1}^N{\qty(\frac{\dd{\vb{z}\nth}}{π^{N_n}}\eu^{-\abs{\vb{z}}^2})}\ket{ψ(t,\underline{\vb{z}}^\ast)}\ket{\underline{\vb{z}}},
|
||||
\end{equation}
|
||||
where \(N_n\) are the number of oscillators in each bath.
|
||||
|
||||
|
||||
We define
|
||||
\begin{equation}
|
||||
\label{eq:processes}
|
||||
η^\ast_n(t) = {\qty(\vb{η}^\ast_t)}_n= -\iu ∑_λg_λ^{(n),\ast} z_λ^{(n),\ast}\eu^{\iu ω_λ\nth t}
|
||||
\end{equation}
|
||||
and using
|
||||
\(\pdv{z_λ^{(n),\ast}}=∫\dd{s}\pdv{η^\ast_n(s)}{z_λ^{(n),\ast}}\fdv{η^\ast_n(s)}\)
|
||||
we arrive at
|
||||
\begin{equation}
|
||||
\label{eq:multinmqsd}
|
||||
∂_tψ_t(\vb{η}^\ast_t) = -\iu H ψ_t(\vb{η}^\ast_t) +
|
||||
\vb{L}\cdot\vb{η}^\ast_tψ_t(\vb{η}^\ast_t) - ∑_{n=1}^N L_n^†∫_0^t\dd{s}α_n(t-s)\fdv{ψ_t(\vb{η}^\ast_t)}{η^\ast_n(s)},
|
||||
\end{equation}
|
||||
where \(α_n(t-s)= {\qty(\vb{α}(t-s))}_n=∑_λ\abs{g_λ\nth}^2\eu^{-\iu ω_λ\nth(t-s)}\) are the
|
||||
zero temperature bath correlation functions. The equation
|
||||
\cref{eq:multinmqsd} becomes the NMQSD by reinterpreting the
|
||||
\(\vb{z}\nth\) as normal distributed complex random variables by
|
||||
virtue of monte-carlo integration of \cref{eq:projected}. The
|
||||
\(η^\ast_n(t)\) become homogeneous gaussian stochastic processes
|
||||
defined through
|
||||
\begin{equation}
|
||||
\label{eq:processescorr}
|
||||
\begin{aligned}
|
||||
\mathcal{M}(η^\ast_n(t)) &=0, & \mathcal{M}(η_n(t)η_m(s)) &= 0,
|
||||
& \mathcal{M}(η_n(t)η_m(s)^\ast) &= δ_{nm}α_n(t-s).
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
|
||||
\subsection{Nonlinear NMQSD}
|
||||
\label{sec:nonlin}
|
||||
|
||||
For the derivation of the lonlinear theory, the characteristic
|
||||
trajectories of the partial differential equation of motion of
|
||||
the Husimi-function
|
||||
\begin{equation}
|
||||
\label{eq:husimi}
|
||||
Q_t(\underline{\vb{z}}, \underline{\vb{z}}^\ast) =
|
||||
\frac{\eu^{-\abs{{\underline{\vb{z}}}}^2}}{π^{∑_n N_n}}
|
||||
\braket{ψ(t, {\underline{\vb{z}}})}{ψ(t, {\underline{\vb{z}}}^\ast)}
|
||||
\end{equation}
|
||||
have to be determined.
|
||||
|
||||
Using \(∂_{\underline{\vb{z}}}\ket{ψ(t, {\underline{\vb{z}}}^\ast)} =
|
||||
0\) and \(∂_{\underline{\vb{z}}^\ast}\bra{ψ(t, {\underline{\vb{z}}})} =
|
||||
0\) because \(\ket{ψ(t, {\underline{\vb{z}}}^\ast)}\) is holomorphic
|
||||
we derive
|
||||
\begin{equation}
|
||||
\label{eq:husimimotion}
|
||||
∂_tQ_t(\underline{\vb{z}}, \underline{\vb{z}}^\ast) = -i
|
||||
∑_{n=1}^N\qty[∂_{z_λ^{(n), \ast}}\eu^{-\iu ω_λ\nth
|
||||
t}\ev{L^†_n}_tQ_t(\underline{\vb{z}}, \underline{\vb{z}}^\ast) - \cc],
|
||||
\end{equation}
|
||||
where \(\ev{L^†_n}_t = \mel{ψ(t, {\underline{\vb{z}}})}{L^†_n}{ψ(t,
|
||||
{\underline{\vb{z}}}^\ast)} / \braket{ψ(t, {\underline{\vb{z}}})}{ψ(t, {\underline{\vb{z}}}^\ast)}\).
|
||||
|
||||
The characteristics of \cref{eq:husimimotion} obey the equations of
|
||||
motion
|
||||
\begin{equation}
|
||||
\label{eq:characteristics}
|
||||
\dot{z}^{(n),\ast}_λ = \iu g_λ\nth \eu^{-\iu ω_λ\nth t} \ev{L^†_n}_t
|
||||
\end{equation}
|
||||
for the stochastic state labels.
|
||||
|
||||
The microscopic dynamics can in-turn be gathered into a shift of the
|
||||
stochastic processes
|
||||
\begin{equation}
|
||||
\label{eq:procshift}
|
||||
\tilde{η}_n^\ast(t) = η_n^\ast(t) + ∫_0^t\dd{s}α_n^\ast(t-s)\ev{L^†_n}_s
|
||||
\end{equation}
|
||||
and we obtain the nonlinear NMQSD equation
|
||||
\begin{multline}
|
||||
\label{eq:multinmqsdnonlin}
|
||||
∂_tψ_t(\tilde{\vb{η}}^\ast_t) = -\iu H ψ_t(\tilde{\vb{η}}^\ast_t) +
|
||||
\vb{L}\cdot\tilde{\vb{η}}^\ast_tψ_t(\tilde{\vb{η}}^\ast_t) \\-
|
||||
∑_{n=1}^N
|
||||
\qty(L_n^†-\ev{L^†_n}_t)∫_0^t\dd{s}α_n(t-s)\eval{\fdv{ψ_t(\tilde{\vb{η}}^\ast_t)}{η^\ast_n(s)}}_{\vb{η}^\ast(s)
|
||||
= \vb{η}(\underline{\vb{z}}^\ast(t), s)}.
|
||||
\end{multline}
|
||||
|
||||
The notation
|
||||
\({\vb{η}^\ast(s) = \vb{η}(\underline{\vb{z}}^\ast(t), s)}\) means
|
||||
that we replace the microscopic \(z_λ^{(n),\ast}\) in
|
||||
\cref{eq:processes} with the shifted ones obeying
|
||||
\cref{eq:characteristics} and evaluate the resulting function at \(s\).
|
||||
This awkward construction can be remedied by the convolutionless
|
||||
formulation. It plays no great role in the HOPS formalism.
|
||||
|
||||
\subsection{Multi Bath HOPS in Fock-Space Formulation}
|
||||
\label{sec:multihops}
|
||||
|
||||
Following the usual derivation~\cite{RichardDiss} (but with a
|
||||
different normalization) and using an exponential expansion of the
|
||||
BCFs \(α_n(τ)=∑_{\mu}^{M_n}=G_μ\nth\eu^{-W_μ\nth τ}\), we define
|
||||
\begin{equation}
|
||||
\label{eq:dops}
|
||||
D_μ\nth(t) \equiv ∫_0^t\dd{s}\eu^{-W_μ\nth (t-s)}\fdv{η^\ast_n(s)}
|
||||
\end{equation}
|
||||
and
|
||||
\begin{equation}
|
||||
\label{eq:dops}
|
||||
D^{\underline{\vb{k}}} \equiv
|
||||
∏_{n=1}^N∏_{μ=1}^{M_n}
|
||||
{\sqrt{\frac{\underline{\vb{k}}_{n,μ}!}{\qty(G\nth_μ)^{\underline{\vb{k}}_{n,μ}}}}
|
||||
\frac{1}{i^{\underline{\vb{k}}_{n,μ}}}}\qty(D_μ\nth)^{\underline{\vb{k}}_{n,μ}},
|
||||
\end{equation}
|
||||
as well as
|
||||
\begin{equation}
|
||||
\label{eq:hierdef}
|
||||
ψ^{\underline{\vb{k}}} \equiv D^{\underline{\vb{k}}}ψ.
|
||||
\end{equation}
|
||||
|
||||
Using
|
||||
\begin{equation}
|
||||
\label{eq:commrelation}
|
||||
[D^\kmat(t),η_n^\ast(t)] = \iu∑_{μ=1}^{M_n}
|
||||
\sqrt{\kmat_{n,μ}G\nth_μ} D^{\kmat -
|
||||
\mat{e}_{n,μ}}
|
||||
\end{equation}
|
||||
where \({\qty(\mat{e}_{n,μ})}_{ij}=δ_{ni}δ_{μj}\) we find after some algebra
|
||||
\begin{multline}
|
||||
\label{eq:multihops}
|
||||
\dot{ψ}^\kmat = \qty[-i H_\sys + \vb{L}\cdot\vb{η}^\ast -
|
||||
∑_{n=1}^N∑_{μ=1}^{M_n}\kmat_{n,μ}W\nth_μ]ψ^\kmat \\+
|
||||
i∑_{n=1}^N∑_{μ=1}^{M_n}\sqrt{G\nth_μ}\qty[\sqrt{\kmat_{n,μ}} L_nψ^{\kmat -
|
||||
\mat{e}_{n,μ}} + \sqrt{\qty(\kmat_{n,μ} + 1)} L^†_nψ^{\kmat +
|
||||
\mat{e}_{n,μ}} ].
|
||||
\end{multline}
|
||||
|
||||
The HOPS equations \cref{eq:multihops} can also be rewritten in an
|
||||
especially appealing form \cite{Gao2021Sep} if we embed the hierarchy
|
||||
states into a larger Hilbert space using
|
||||
\begin{equation}
|
||||
\label{eq:fockpsi}
|
||||
\ket{Ψ} = \sum_\kmat\ket{\psi^\kmat}\otimes \ket{\kmat}
|
||||
\end{equation}
|
||||
where
|
||||
\(\ket{\kmat}=\bigotimes_{n=1}^N\bigotimes_{μ=1}^{N_n}\ket{\kmat_{n,μ}}\)
|
||||
are bosonic Fock-states.
|
||||
|
||||
Now \cref{eq:multihops} becomes
|
||||
\begin{equation}
|
||||
\label{eq:fockhops}
|
||||
∂_t\ket{Ψ} = \qty[-i H_\sys + \vb{L}\cdot\vb{η}^\ast -
|
||||
∑_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ +
|
||||
i∑_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^†_{n,μ}L_n + b_{n,μ}L^†_n)] \ket{Ψ}.
|
||||
\end{equation}
|
||||
|
|
Loading…
Add table
Reference in a new issue