mirror of
https://github.com/vale981/master-thesis
synced 2025-03-05 10:01:43 -05:00
two ho more time steps
This commit is contained in:
parent
cef8074ebe
commit
647b869eae
2 changed files with 20 additions and 18 deletions
|
@ -31,7 +31,7 @@
|
|||
hops_bcf = hops.util.bcf.OhmicBCF_zeroTemp(s, 1, wc)
|
||||
|
||||
g, w = hops_bcf.exponential_coefficients(bcf_terms)
|
||||
integration = IntP(t_steps=(2, 100))
|
||||
integration = IntP(t_steps=(20, 1000))
|
||||
|
||||
q_proto = qutip.operators.create(max_HO_level) + qutip.operators.destroy(
|
||||
max_HO_level
|
||||
|
@ -154,8 +154,8 @@
|
|||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: ho_data_local/two_baths/_6/two_baths_6be504a1a85fd41f80e35d1f604cbfd6_1.h5
|
||||
: 0% 34/10000 [02:22<11:35:31, 4.19s/it]
|
||||
: ho_data/two_baths/_6/two_baths_6be504a1a85fd41f80e35d1f604cbfd6_1.h5
|
||||
: 0it [00:00, ?it/s]
|
||||
|
||||
* Flow
|
||||
#+begin_src jupyter-python :results none
|
||||
|
@ -202,8 +202,8 @@
|
|||
#+RESULTS:
|
||||
:RESULTS:
|
||||
: WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.
|
||||
: <matplotlib.legend.Legend at 0x7eff1fe96400>
|
||||
[[file:./.ob-jupyter/fa167f554a2a849afec72057205569a35a9ed376.svg]]
|
||||
: <matplotlib.legend.Legend at 0x7ff07f657220>
|
||||
[[file:./.ob-jupyter/7dc9909701b9a96b2e00e19325c23b2ec0a8aa2b.svg]]
|
||||
:END:
|
||||
|
||||
* Analytic
|
||||
|
@ -254,7 +254,8 @@
|
|||
#+begin_src jupyter-python
|
||||
fig, ax = plt.subplots()
|
||||
for params, flow, ex_flow, keys in zip(multi_params, flow_hops, exact_flows, model_keys):
|
||||
consistency = (-1 * flow).consistency(ex_flow)
|
||||
consistency = (-1 * flow.for_bath(0)).consistency(ex_flow[0])
|
||||
consistency1 = (-1 * flow.for_bath(1)).consistency(ex_flow[1])
|
||||
pu.plot_with_σ(
|
||||
params.IntP.t,
|
||||
-1 * flow,
|
||||
|
@ -267,7 +268,7 @@
|
|||
-1 * flow,
|
||||
bath=1,
|
||||
ax=ax,
|
||||
label=rf"$α(0)={params.SysP.g[0].sum().real:.2f}$ $ω_c={keys['wc']}$ ${consistency}\%$",
|
||||
label=rf"$α(0)={params.SysP.g[0].sum().real:.2f}$ $ω_c={keys['wc']}$ ${consistency1}\%$",
|
||||
)
|
||||
ax.plot(params.IntP.t, ex_flow[0], linestyle="dotted", color="black")
|
||||
ax.plot(params.IntP.t, ex_flow[1], linestyle="dotted", color="black")
|
||||
|
@ -282,15 +283,15 @@
|
|||
|
||||
#+RESULTS:
|
||||
:RESULTS:
|
||||
: <matplotlib.legend.Legend at 0x7eff0ea6f8e0>
|
||||
[[file:./.ob-jupyter/904cc3c3d597a77e7e3544b4a3463fdc110a9a36.svg]]
|
||||
: <matplotlib.legend.Legend at 0x7ff06e7e79a0>
|
||||
[[file:./.ob-jupyter/993434ccfc11251484909bde5f5f8eae60b822cf.svg]]
|
||||
:END:
|
||||
|
||||
#+begin_src jupyter-python
|
||||
pu.plot_convergence(
|
||||
multi_params[-1].IntP.t,
|
||||
(-1 * flow_hops[-1].for_bath(0)
|
||||
-ex_flow[0]) * (1/flow_hops[-1].for_bath(1).max.value),
|
||||
(-1 * flow_hops[-1].for_bath(1)
|
||||
-ex_flow[1]) * (1/flow_hops[-1].for_bath(1).max.value),
|
||||
reference=np.zeros_like(ex_flow[0])
|
||||
)
|
||||
plt.axhline(0)
|
||||
|
@ -300,8 +301,8 @@
|
|||
|
||||
#+RESULTS:
|
||||
:RESULTS:
|
||||
: <matplotlib.legend.Legend at 0x7eff0ee60790>
|
||||
[[file:./.ob-jupyter/23c886933441b9ce654cc2377af65a8009e23521.svg]]
|
||||
: <matplotlib.legend.Legend at 0x7ff06e3b0820>
|
||||
[[file:./.ob-jupyter/df60edc8869ab6d9fcce16d1d99cfc5624368eb4.svg]]
|
||||
:END:
|
||||
|
||||
* Obesrvations
|
||||
|
|
|
@ -26,7 +26,7 @@ def ho_duo(
|
|||
hops_bcf = hops.util.bcf.OhmicBCF_zeroTemp(s, 1, wc)
|
||||
|
||||
g, w = hops_bcf.exponential_coefficients(bcf_terms)
|
||||
integration = IntP(t_steps=(2, 100))
|
||||
integration = IntP(t_steps=(20, 1000))
|
||||
|
||||
q_proto = qutip.operators.create(max_HO_level) + qutip.operators.destroy(
|
||||
max_HO_level
|
||||
|
@ -202,7 +202,8 @@ for params, keys in zip(multi_params, model_keys):
|
|||
|
||||
fig, ax = plt.subplots()
|
||||
for params, flow, ex_flow, keys in zip(multi_params, flow_hops, exact_flows, model_keys):
|
||||
consistency = (-1 * flow).consistency(ex_flow)
|
||||
consistency = (-1 * flow.for_bath(0)).consistency(ex_flow[0])
|
||||
consistency1 = (-1 * flow.for_bath(1)).consistency(ex_flow[1])
|
||||
pu.plot_with_σ(
|
||||
params.IntP.t,
|
||||
-1 * flow,
|
||||
|
@ -215,7 +216,7 @@ for params, flow, ex_flow, keys in zip(multi_params, flow_hops, exact_flows, mod
|
|||
-1 * flow,
|
||||
bath=1,
|
||||
ax=ax,
|
||||
label=rf"$α(0)={params.SysP.g[0].sum().real:.2f}$ $ω_c={keys['wc']}$ ${consistency}\%$",
|
||||
label=rf"$α(0)={params.SysP.g[0].sum().real:.2f}$ $ω_c={keys['wc']}$ ${consistency1}\%$",
|
||||
)
|
||||
ax.plot(params.IntP.t, ex_flow[0], linestyle="dotted", color="black")
|
||||
ax.plot(params.IntP.t, ex_flow[1], linestyle="dotted", color="black")
|
||||
|
@ -229,8 +230,8 @@ ax.legend()
|
|||
|
||||
pu.plot_convergence(
|
||||
multi_params[-1].IntP.t,
|
||||
(-1 * flow_hops[-1].for_bath(0)
|
||||
-ex_flow[0]) * (1/flow_hops[-1].for_bath(1).max.value),
|
||||
(-1 * flow_hops[-1].for_bath(1)
|
||||
-ex_flow[1]) * (1/flow_hops[-1].for_bath(1).max.value),
|
||||
reference=np.zeros_like(ex_flow[0])
|
||||
)
|
||||
plt.axhline(0)
|
||||
|
|
Loading…
Add table
Reference in a new issue