mirror of
https://github.com/vale981/master-thesis
synced 2025-03-05 10:01:43 -05:00
and another exploratory
This commit is contained in:
parent
24a623a697
commit
57dfd963f9
2 changed files with 30 additions and 26 deletions
|
@ -158,7 +158,8 @@ model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s, τ_off, n, Δ
|
||||||
switch_cycles=1,
|
switch_cycles=1,
|
||||||
therm_initial_state=False,
|
therm_initial_state=False,
|
||||||
s=[1] * 2,
|
s=[1] * 2,
|
||||||
#ε_init=.1,
|
ε_init=.1,
|
||||||
|
δ_init=1
|
||||||
)
|
)
|
||||||
model.k_max = 4
|
model.k_max = 4
|
||||||
# model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
|
# model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
|
||||||
|
@ -169,7 +170,7 @@ ts = np.linspace(0,50,1000)
|
||||||
fig, ax = fs.plot_complex(ts, model.bcf(0)(ts))
|
fig, ax = fs.plot_complex(ts, model.bcf(0)(ts))
|
||||||
fs.plot_complex(ts, model.thermal_correlations(1)(ts))
|
fs.plot_complex(ts, model.thermal_correlations(1)(ts))
|
||||||
|
|
||||||
proc = model.thermal_process(0)
|
proc = model.thermal_process(1)
|
||||||
import hops
|
import hops
|
||||||
z=hops.core.utility.uni_to_gauss(np.random.rand(proc.get_num_y() * 2))
|
z=hops.core.utility.uni_to_gauss(np.random.rand(proc.get_num_y() * 2))
|
||||||
proc.new_process(z)
|
proc.new_process(z)
|
||||||
|
@ -184,7 +185,7 @@ vs = np.linspace(0.1, 10, 100)
|
||||||
plt.plot(vs, chi(vs, ω_0))
|
plt.plot(vs, chi(vs, ω_0))
|
||||||
plt.plot(vs, G_h(vs))
|
plt.plot(vs, G_h(vs))
|
||||||
|
|
||||||
aux.integrate(model, 1)
|
aux.integrate(model, 100)
|
||||||
|
|
||||||
_, ax = fs.plot_energy_overview(model, markersize=1, ensemble_args=dict(gc_sleep=0))
|
_, ax = fs.plot_energy_overview(model, markersize=1, ensemble_args=dict(gc_sleep=0))
|
||||||
|
|
||||||
|
|
|
@ -25,7 +25,7 @@ Init ray and silence stocproc.
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: RayContext(dashboard_url='', python_version='3.9.13', ray_version='1.13.0', ray_commit='e4ce38d001dbbe09cd21c497fedd03d692b2be3e', address_info={'node_ip_address': '141.30.17.225', 'raylet_ip_address': '141.30.17.225', 'redis_address': None, 'object_store_address': '/tmp/ray/session_2022-06-23_16-37-40_204409_252420/sockets/plasma_store', 'raylet_socket_name': '/tmp/ray/session_2022-06-23_16-37-40_204409_252420/sockets/raylet', 'webui_url': '', 'session_dir': '/tmp/ray/session_2022-06-23_16-37-40_204409_252420', 'metrics_export_port': 63012, 'gcs_address': '141.30.17.225:54143', 'address': '141.30.17.225:54143', 'node_id': '2f920e3b42f4aa5083c5586f173cc82069674783e95eafbbf03f71b5'})
|
: RayContext(dashboard_url='', python_version='3.9.13', ray_version='1.13.0', ray_commit='e4ce38d001dbbe09cd21c497fedd03d692b2be3e', address_info={'node_ip_address': '141.30.17.225', 'raylet_ip_address': '141.30.17.225', 'redis_address': None, 'object_store_address': '/tmp/ray/session_2022-06-24_10-53-49_514411_273091/sockets/plasma_store', 'raylet_socket_name': '/tmp/ray/session_2022-06-24_10-53-49_514411_273091/sockets/raylet', 'webui_url': '', 'session_dir': '/tmp/ray/session_2022-06-24_10-53-49_514411_273091', 'metrics_export_port': 53492, 'gcs_address': '141.30.17.225:45555', 'address': '141.30.17.225:45555', 'node_id': 'dbb3ad75d477fb16831ea15ae7bdfb8839dd6d8a5c34b13f1651c4ea'})
|
||||||
|
|
||||||
#+begin_src jupyter-python :results none
|
#+begin_src jupyter-python :results none
|
||||||
from hops.util.logging_setup import logging_setup
|
from hops.util.logging_setup import logging_setup
|
||||||
|
@ -178,7 +178,8 @@ Init ray and silence stocproc.
|
||||||
switch_cycles=1,
|
switch_cycles=1,
|
||||||
therm_initial_state=False,
|
therm_initial_state=False,
|
||||||
s=[1] * 2,
|
s=[1] * 2,
|
||||||
#ε_init=.1,
|
ε_init=.1,
|
||||||
|
δ_init=1
|
||||||
)
|
)
|
||||||
model.k_max = 4
|
model.k_max = 4
|
||||||
# model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
|
# model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
|
||||||
|
@ -209,8 +210,8 @@ Let's test the assumptions of the paper.
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
| <matplotlib.lines.Line2D | at | 0x7f54a08ecca0> |
|
| <matplotlib.lines.Line2D | at | 0x7fe0347c2250> |
|
||||||
[[file:./.ob-jupyter/89abe6a4bf84190aac8b4ad313b3d314f24b702c.svg]]
|
[[file:./.ob-jupyter/5d81693c2e5ff1e9687e5e70e5180d641abd1dc3.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
#+begin_src jupyter-python :tangle nil
|
#+begin_src jupyter-python :tangle nil
|
||||||
|
@ -228,8 +229,8 @@ Let's test the assumptions of the paper.
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
| <matplotlib.lines.Line2D | at | 0x7f54a1447910> |
|
| <matplotlib.lines.Line2D | at | 0x7f54a0c921f0> |
|
||||||
[[file:./.ob-jupyter/2f4bb742fd68fa025f23f99e0e06df87a94feb45.svg]]
|
[[file:./.ob-jupyter/3cd2693550d522629d7472e73e4dc97b6bd8c552.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
#+begin_src jupyter-python
|
#+begin_src jupyter-python
|
||||||
|
@ -241,12 +242,12 @@ Let's test the assumptions of the paper.
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
| <Figure | size | 432x288 | with | 1 | Axes> | <AxesSubplot:> |
|
| <Figure | size | 432x288 | with | 1 | Axes> | <AxesSubplot:> |
|
||||||
[[file:./.ob-jupyter/a08788b7160e9b1347a0835773dede97173fbfff.svg]]
|
[[file:./.ob-jupyter/9edc7acf494129f3df0c94e05cd48c7ba0b6c1ba.svg]]
|
||||||
[[file:./.ob-jupyter/43aa665cc7b25e81c83a26a6e4af5b21c03223c4.svg]]
|
[[file:./.ob-jupyter/685c7c43745ed82b661cd7278414d5b34ad6e6d8.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
#+begin_src jupyter-python
|
#+begin_src jupyter-python
|
||||||
proc = model.thermal_process(0)
|
proc = model.thermal_process(1)
|
||||||
import hops
|
import hops
|
||||||
z=hops.core.utility.uni_to_gauss(np.random.rand(proc.get_num_y() * 2))
|
z=hops.core.utility.uni_to_gauss(np.random.rand(proc.get_num_y() * 2))
|
||||||
proc.new_process(z)
|
proc.new_process(z)
|
||||||
|
@ -256,7 +257,7 @@ Let's test the assumptions of the paper.
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
| <Figure | size | 432x288 | with | 1 | Axes> | <AxesSubplot:> |
|
| <Figure | size | 432x288 | with | 1 | Axes> | <AxesSubplot:> |
|
||||||
[[file:./.ob-jupyter/2088301f5f415fe36b0aa67f2ee589fa3ebf382a.svg]]
|
[[file:./.ob-jupyter/e8dc2fc532b69162015e8390d3a9b976fdefde53.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
|
|
||||||
|
@ -275,22 +276,23 @@ Let's test the assumptions of the paper.
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
| <matplotlib.lines.Line2D | at | 0x7f54a10a4430> |
|
| <matplotlib.lines.Line2D | at | 0x7f54a00e7280> |
|
||||||
[[file:./.ob-jupyter/5d35962c0527bd86684f67665c63888f16c252a2.svg]]
|
[[file:./.ob-jupyter/ac8d27d0c620c5cf37a809aa1c38486283d71c1e.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
|
|
||||||
** TODO Integration
|
** TODO Integration
|
||||||
#+begin_src jupyter-python
|
#+begin_src jupyter-python
|
||||||
aux.integrate(model, 1)
|
aux.integrate(model, 100)
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
: [INFO hops.core.integration 2169805] Choosing the nonlinear integrator.
|
: [INFO hops.core.integration 252420] Choosing the nonlinear integrator.
|
||||||
: [INFO hops.core.integration 2169805] Using 4 integrators.
|
: [INFO hops.core.integration 252420] Using 4 integrators.
|
||||||
: [INFO hops.core.integration 2169805] Some 1 trajectories have to be integrated.
|
: [INFO hops.core.integration 252420] Some 1 trajectories have to be integrated.
|
||||||
: [INFO hops.core.integration 2169805] Using 1001 hierarchy states.
|
: [INFO hops.core.integration 252420] Using 1001 hierarchy states.
|
||||||
: 100% 1/1 [01:15<00:00, 75.76s/it]
|
: 0% 0/1 [00:00<?, ?it/s][INFO hops.core.signal_delay 252420] caught sig 'SIGINT'
|
||||||
|
: [INFO hops.core.signal_delay 252420] caught sig 'SIGINT'
|
||||||
|
|
||||||
|
|
||||||
#+begin_src jupyter-python
|
#+begin_src jupyter-python
|
||||||
|
@ -304,14 +306,15 @@ Let's test the assumptions of the paper.
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
: <matplotlib.legend.Legend at 0x7f54a10501c0>
|
: <matplotlib.legend.Legend at 0x7fe0469f1160>
|
||||||
[[file:./.ob-jupyter/22365ffc3296f506a4158e15abbc62a18d7f4ec4.svg]]
|
[[file:./.ob-jupyter/6766f4a9b087f073bba9ed06a1e8b3d14fb21bc4.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
- **too fast decoupling kills it**
|
- **too fast decoupling kills it**
|
||||||
- no anti-zeno effects without detuning?
|
- no anti-zeno effects without detuning?
|
||||||
- **spectral separation seems to be important** or maybe it's just the coupling strenght
|
- **spectral separation seems to be important** or maybe it's just the coupling strenght
|
||||||
- too long modulation kills it
|
- too long modulation kills it
|
||||||
|
- interestingly the interactin energy does not really depend on the coupling -> thermal part dominates
|
||||||
|
|
||||||
#+begin_src jupyter-python
|
#+begin_src jupyter-python
|
||||||
with aux.get_data(model) as data:
|
with aux.get_data(model) as data:
|
||||||
|
@ -338,7 +341,7 @@ Let's test the assumptions of the paper.
|
||||||
: pts[1:N+1, 1] = dep1slice
|
: pts[1:N+1, 1] = dep1slice
|
||||||
: /nix/store/av32kn66py1m065lq75rmmlxrsqvgbaa-python3-3.9.13-env/lib/python3.9/site-packages/matplotlib/axes/_axes.py:5224: ComplexWarning: Casting complex values to real discards the imaginary part
|
: /nix/store/av32kn66py1m065lq75rmmlxrsqvgbaa-python3-3.9.13-env/lib/python3.9/site-packages/matplotlib/axes/_axes.py:5224: ComplexWarning: Casting complex values to real discards the imaginary part
|
||||||
: pts[N+2:, 1] = dep2slice[::-1]
|
: pts[N+2:, 1] = dep2slice[::-1]
|
||||||
[[file:./.ob-jupyter/bf05798c67a06f36ab9884a1798f14df32a22584.svg]]
|
[[file:./.ob-jupyter/800909fda5d70fe951f3782e2f975bc1b9923dd3.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
- no steady state ... but we have to average...
|
- no steady state ... but we have to average...
|
||||||
|
@ -351,8 +354,8 @@ Let's test the assumptions of the paper.
|
||||||
|
|
||||||
#+RESULTS:
|
#+RESULTS:
|
||||||
:RESULTS:
|
:RESULTS:
|
||||||
| <matplotlib.lines.Line2D | at | 0x7f54a1944ca0> |
|
| <matplotlib.lines.Line2D | at | 0x7fe034e71a30> |
|
||||||
[[file:./.ob-jupyter/64fca5ab15f5589fd2a0bed2ecf56cd41beeb000.svg]]
|
[[file:./.ob-jupyter/4282545679cf56de104736b89c1c3cbb5994f7d9.svg]]
|
||||||
:END:
|
:END:
|
||||||
|
|
||||||
** TODO Power and Efficiency
|
** TODO Power and Efficiency
|
||||||
|
|
Loading…
Add table
Reference in a new issue