try without init

This commit is contained in:
Valentin Boettcher 2022-07-04 15:39:50 +02:00
parent b4641e8875
commit 3d1068def8
2 changed files with 17 additions and 10 deletions

View file

@ -165,7 +165,7 @@ model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s, τ_off, n, Δ
ε=.7,
ω_c=0.1,
ε_couple=0.8,
n=4,
n=8,
detune=-0.08,
ω_0=2,
T_c=.8,
@ -175,7 +175,7 @@ model, Δ, (τ_mod, τ_c, τ_bath, cycles, model.ω_s, ω_0, τ_s, τ_off, n, Δ
switch_cycles=1,
therm_initial_state=False,
s=[1]*2,
ε_init=.3
#ε_init=.3
)
model.k_max = 4
# model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])

View file

@ -185,7 +185,7 @@ Init ray and silence stocproc.
ε=.7,
ω_c=0.1,
ε_couple=0.8,
n=4,
n=8,
detune=-0.08,
ω_0=2,
T_c=.8,
@ -195,7 +195,7 @@ Init ray and silence stocproc.
switch_cycles=1,
therm_initial_state=False,
s=[1]*2,
ε_init=.3
#ε_init=.3
)
model.k_max = 4
# model, params = anti_zeno_engine(ε=1/2, ε_couple=1e-4, n=1, detune=.5, δ=[.1,.1])
@ -226,8 +226,8 @@ Let's test the assumptions of the paper.
#+RESULTS:
:RESULTS:
| <matplotlib.lines.Line2D | at | 0x7feeacbd7550> |
[[file:./.ob-jupyter/b31fd85d99945713755c9f15799276f11ded9c72.svg]]
| <matplotlib.lines.Line2D | at | 0x7feeaba77700> |
[[file:./.ob-jupyter/454724eb455c76efa6cc6b66440e9c606981c971.svg]]
:END:
#+begin_src jupyter-python :tangle nil
@ -415,6 +415,12 @@ Let's test the assumptions of the paper.
ax.legend()
#+end_src
#+RESULTS:
:RESULTS:
: <matplotlib.legend.Legend at 0x7feeae3e8730>
[[file:./.ob-jupyter/7ab9215394ea95c4840ebe39eea48b1ae06bcf26.svg]]
:END:
- **too fast decoupling kills it**
- no anti-zeno effects without detuning?
- **spectral separation seems to be important** or maybe it's just the coupling strenght
@ -423,6 +429,7 @@ Let's test the assumptions of the paper.
- making an initial coupling period messes up the accuracy
- too weak coupling -> time scale too long
- at temperatures around 5 x sys scale -> 1000 samples not engough
- init breaks it?
#+begin_src jupyter-python
with aux.get_data(model) as data:
@ -449,7 +456,7 @@ Let's test the assumptions of the paper.
: pts[1:N+1, 1] = dep1slice
: /nix/store/5s7kjvxclc9c53l6jzzp3c6fhbc52myg-python3-3.9.13-env/lib/python3.9/site-packages/matplotlib/axes/_axes.py:5224: ComplexWarning: Casting complex values to real discards the imaginary part
: pts[N+2:, 1] = dep2slice[::-1]
[[file:./.ob-jupyter/89b0a921a192ca2c9302f224ee44de11d3ef769f.svg]]
[[file:./.ob-jupyter/8ebd7afec954939e9224b91b21abcf6de8b9c2f1.svg]]
:END:
- no steady state ... but we have to average...
@ -462,8 +469,8 @@ Let's test the assumptions of the paper.
#+RESULTS:
:RESULTS:
| <matplotlib.lines.Line2D | at | 0x7fdba036e490> |
[[file:./.ob-jupyter/a6a5cf21051c53115e4b272f924f107fa8309303.svg]]
| <matplotlib.lines.Line2D | at | 0x7feeabad3340> |
[[file:./.ob-jupyter/ed1068cfde19ceb3b502aef89f715f63b411350b.svg]]
:END:
** TODO Power and Efficiency
@ -488,7 +495,7 @@ We need the time points where we sample the total energy.
#+end_src
#+RESULTS:
[[file:./.ob-jupyter/bd6ac52527ec691daf8ab0be3e900e82a2c2ae62.svg]]
[[file:./.ob-jupyter/1b8ad650d9876909c1915d0cf9b93ff62df16fb4.svg]]