mirror of
https://github.com/vale981/master-thesis
synced 2025-03-05 10:01:43 -05:00
update deps
This commit is contained in:
parent
01676d8153
commit
2fbcecd003
3 changed files with 131 additions and 6 deletions
|
@ -1530,6 +1530,20 @@ tornado = ">=6.1.0"
|
|||
[package.extras]
|
||||
test = ["pre-commit", "pytest-timeout", "pytest (>=6.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "tikzplotlib"
|
||||
version = "0.10.1"
|
||||
description = "Convert matplotlib figures into TikZ/PGFPlots"
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
|
||||
[package.dependencies]
|
||||
matplotlib = ">=1.4.0"
|
||||
numpy = "*"
|
||||
Pillow = "*"
|
||||
webcolors = "*"
|
||||
|
||||
[[package]]
|
||||
name = "tinycss2"
|
||||
version = "1.1.1"
|
||||
|
@ -1670,6 +1684,14 @@ category = "main"
|
|||
optional = false
|
||||
python-versions = "*"
|
||||
|
||||
[[package]]
|
||||
name = "webcolors"
|
||||
version = "1.12"
|
||||
description = "A library for working with color names and color values formats defined by HTML and CSS."
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
|
||||
[[package]]
|
||||
name = "webencodings"
|
||||
version = "0.5.1"
|
||||
|
@ -1692,7 +1714,7 @@ notebook = ">=4.4.1"
|
|||
[metadata]
|
||||
lock-version = "1.1"
|
||||
python-versions = ">=3.9,<3.11"
|
||||
content-hash = "9607f8fb913cf9aad27f1a425d1e82d72f652c7d908bb6566c929b66586c394a"
|
||||
content-hash = "7be6f6b3cb3b948e49d1daa7ba89def726afeb68ba1128f1b0ba6f4344f85fe3"
|
||||
|
||||
[metadata.files]
|
||||
aiosignal = [
|
||||
|
@ -2895,6 +2917,10 @@ terminado = [
|
|||
{file = "terminado-0.15.0-py3-none-any.whl", hash = "sha256:0d5f126fbfdb5887b25ae7d9d07b0d716b1cc0ccaacc71c1f3c14d228e065197"},
|
||||
{file = "terminado-0.15.0.tar.gz", hash = "sha256:ab4eeedccfcc1e6134bfee86106af90852c69d602884ea3a1e8ca6d4486e9bfe"},
|
||||
]
|
||||
tikzplotlib = [
|
||||
{file = "tikzplotlib-0.10.1-py3-none-any.whl", hash = "sha256:bf0451b86fe4db40aa742f7e5a180dfaaadf57c746ddb2ab7e58a5163d8be75f"},
|
||||
{file = "tikzplotlib-0.10.1.tar.gz", hash = "sha256:93d141342d143804fc1dfabe03e6d4e38e547cf72803bdf124615affdd56f59d"},
|
||||
]
|
||||
tinycss2 = [
|
||||
{file = "tinycss2-1.1.1-py3-none-any.whl", hash = "sha256:fe794ceaadfe3cf3e686b22155d0da5780dd0e273471a51846d0a02bc204fec8"},
|
||||
{file = "tinycss2-1.1.1.tar.gz", hash = "sha256:b2e44dd8883c360c35dd0d1b5aad0b610e5156c2cb3b33434634e539ead9d8bf"},
|
||||
|
@ -2948,6 +2974,10 @@ wcwidth = [
|
|||
{file = "wcwidth-0.2.5-py2.py3-none-any.whl", hash = "sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784"},
|
||||
{file = "wcwidth-0.2.5.tar.gz", hash = "sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83"},
|
||||
]
|
||||
webcolors = [
|
||||
{file = "webcolors-1.12-py3-none-any.whl", hash = "sha256:d98743d81d498a2d3eaf165196e65481f0d2ea85281463d856b1e51b09f62dce"},
|
||||
{file = "webcolors-1.12.tar.gz", hash = "sha256:16d043d3a08fd6a1b1b7e3e9e62640d09790dce80d2bdd4792a175b35fe794a9"},
|
||||
]
|
||||
webencodings = [
|
||||
{file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"},
|
||||
{file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"},
|
||||
|
|
|
@ -19,6 +19,7 @@ Cython = "^0.29.30"
|
|||
statsmodels = "^0.13.2"
|
||||
protobuf = "==3.20.1"
|
||||
tabulate = "^0.8.9"
|
||||
tikzplotlib = "^0.10.1"
|
||||
|
||||
[tool.poetry.dev-dependencies]
|
||||
black = "^21.12b0"
|
||||
|
|
|
@ -106,7 +106,7 @@
|
|||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: RayContext(dashboard_url='', python_version='3.9.13', ray_version='1.13.0', ray_commit='e4ce38d001dbbe09cd21c497fedd03d692b2be3e', address_info={'node_ip_address': '141.30.17.225', 'raylet_ip_address': '141.30.17.225', 'redis_address': None, 'object_store_address': '/tmp/ray/session_2022-07-25_10-06-10_321700_2896957/sockets/plasma_store', 'raylet_socket_name': '/tmp/ray/session_2022-07-25_10-06-10_321700_2896957/sockets/raylet', 'webui_url': '', 'session_dir': '/tmp/ray/session_2022-07-25_10-06-10_321700_2896957', 'metrics_export_port': 62937, 'gcs_address': '141.30.17.225:61225', 'address': '141.30.17.225:61225', 'node_id': '33637dfe594aa8dfbe572b47f0dfa94fad6f32191ef2d5f269609c0d'})
|
||||
: RayContext(dashboard_url='', python_version='3.9.13', ray_version='1.13.0', ray_commit='e4ce38d001dbbe09cd21c497fedd03d692b2be3e', address_info={'node_ip_address': '141.30.17.225', 'raylet_ip_address': '141.30.17.225', 'redis_address': None, 'object_store_address': '/tmp/ray/session_2022-07-25_15-58-15_167539_2941624/sockets/plasma_store', 'raylet_socket_name': '/tmp/ray/session_2022-07-25_15-58-15_167539_2941624/sockets/raylet', 'webui_url': '', 'session_dir': '/tmp/ray/session_2022-07-25_15-58-15_167539_2941624', 'metrics_export_port': 48616, 'gcs_address': '141.30.17.225:64543', 'address': '141.30.17.225:64543', 'node_id': '59156e19ccf152f9b6c218e104c8ee997f882e9ac2ede555e0cebbc0'})
|
||||
|
||||
|
||||
#+begin_src jupyter-python
|
||||
|
@ -119,7 +119,7 @@
|
|||
data_name="zero_t",
|
||||
)
|
||||
print(supervisor.get_data(True).hdf5_name)
|
||||
supervisor.integrate()
|
||||
#supervisor.integrate()
|
||||
supervisors.append(supervisor)
|
||||
|
||||
#+end_src
|
||||
|
@ -128,8 +128,8 @@
|
|||
: ho_data/zero_t/_e/zero_t_e5bb719aebf17ce48e7338370309f454_1.h5
|
||||
: ho_data/zero_t/_7/zero_t_716813e927dc901d29acbdbbac7d5148_1.h5
|
||||
: ho_data/zero_t/_5/zero_t_56871e76eaf4e301c1938ea4a855cfdf_1.h5
|
||||
: ho_data/zero_t/_7/zero_t_716813e927dc901d29acbdbbac7d5148_1.h5
|
||||
: ho_data/zero_t/_1/zero_t_1bc1f6d01789a17e0081e545ecadbb29_1.h5
|
||||
: ho_data/zero_t/_0/zero_t_03786afe10c6c708b87cc332607b1b48_1.h5
|
||||
|
||||
* Flow
|
||||
#+begin_src jupyter-python :results none
|
||||
|
@ -152,6 +152,100 @@
|
|||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
:RESULTS:
|
||||
: Loading: 0% 2/417 [00:02<09:53, 1.43s/it]
|
||||
# [goto error]
|
||||
#+begin_example
|
||||
[0;31m---------------------------------------------------------------------------[0m
|
||||
[0;31mKeyboardInterrupt[0m Traceback (most recent call last)
|
||||
Input [0;32mIn [17][0m, in [0;36m<cell line: 2>[0;34m()[0m
|
||||
[1;32m 2[0m [38;5;28;01mfor[39;00m supervisor [38;5;129;01min[39;00m supervisors:
|
||||
[1;32m 3[0m hf_sys [38;5;241m=[39m hopsflow[38;5;241m.[39mSystemParams[38;5;241m.[39mfrom_hi_params(supervisor[38;5;241m.[39mparams)
|
||||
[1;32m 4[0m flow_hops[38;5;241m.[39mappend(
|
||||
[0;32m----> 5[0m [43mhopsflow[49m[38;5;241;43m.[39;49m[43mheat_flow_from_data[49m[43m([49m
|
||||
[1;32m 6[0m [43m [49m[43msupervisor[49m[38;5;241;43m.[39;49m[43mget_data[49m[43m([49m[38;5;28;43;01mTrue[39;49;00m[43m)[49m[43m,[49m
|
||||
[1;32m 7[0m [43m [49m[43mhf_sys[49m[43m,[49m
|
||||
[1;32m 8[0m [43m [49m[43mevery[49m[38;5;241;43m=[39;49m[38;5;241;43m1000[39;49m[43m,[49m
|
||||
[1;32m 9[0m [43m [49m[43msave[49m[38;5;241;43m=[39;49m[38;5;124;43mf[39;49m[38;5;124;43m"[39;49m[38;5;124;43mflow_zero[39;49m[38;5;124;43m"[39;49m[43m,[49m
|
||||
[1;32m 10[0m [43m [49m[43m)[49m
|
||||
[1;32m 11[0m )
|
||||
|
||||
File [0;32m~/src/hopsflow/hopsflow/hopsflow.py:556[0m, in [0;36mheat_flow_from_data[0;34m(data, thermal_params, *args, **kwargs)[0m
|
||||
[1;32m 550[0m [38;5;28;01mif[39;00m thermal_params [38;5;129;01mis[39;00m [38;5;129;01mnot[39;00m [38;5;28;01mNone[39;00m:
|
||||
[1;32m 551[0m kwargs[[38;5;124m"[39m[38;5;124mthermal_params[39m[38;5;124m"[39m] [38;5;241m=[39m (
|
||||
[1;32m 552[0m d[38;5;241m.[39mvalid_sample_iterator(d[38;5;241m.[39mrng_seed),
|
||||
[1;32m 553[0m thermal_params,
|
||||
[1;32m 554[0m )
|
||||
[0;32m--> 556[0m [38;5;28;01mreturn[39;00m [43mheat_flow_ensemble[49m[43m([49m
|
||||
[1;32m 557[0m [43m [49m[43md[49m[38;5;241;43m.[39;49m[43mvalid_sample_iterator[49m[43m([49m[43md[49m[38;5;241;43m.[39;49m[43mstoc_traj[49m[43m)[49m[43m,[49m
|
||||
[1;32m 558[0m [43m [49m[43md[49m[38;5;241;43m.[39;49m[43mvalid_sample_iterator[49m[43m([49m[43md[49m[38;5;241;43m.[39;49m[43maux_states[49m[43m)[49m[43m,[49m
|
||||
[1;32m 559[0m [43m [49m[38;5;241;43m*[39;49m[43margs[49m[43m,[49m
|
||||
[1;32m 560[0m [43m [49m[38;5;241;43m*[39;49m[38;5;241;43m*[39;49m[43m([49m[38;5;28;43mdict[39;49m[43m([49m[43mN[49m[38;5;241;43m=[39;49m[43mdata[49m[38;5;241;43m.[39;49m[43msamples[49m[43m)[49m[43m [49m[38;5;241;43m|[39;49m[43m [49m[43mkwargs[49m[43m)[49m[43m,[49m
|
||||
[1;32m 561[0m [43m[49m[43m)[49m
|
||||
|
||||
File [0;32m~/src/hopsflow/hopsflow/hopsflow.py:520[0m, in [0;36mheat_flow_ensemble[0;34m(ψ_0s, ψ_1s, params, therm_args, only_therm, **kwargs)[0m
|
||||
[1;32m 516[0m flow [38;5;241m+[39m[38;5;241m=[39m flow_trajectory_therm(run, therm_run)
|
||||
[1;32m 518[0m [38;5;28;01mreturn[39;00m flow
|
||||
[0;32m--> 520[0m [38;5;28;01mreturn[39;00m [43mutil[49m[38;5;241;43m.[39;49m[43mensemble_mean[49m[43m([49m
|
||||
[1;32m 521[0m [43m [49m[38;5;28;43miter[39;49m[43m([49m[38;5;28;43mzip[39;49m[43m([49m[43mψ_0s[49m[43m,[49m[43m [49m[43mψ_1s[49m[43m,[49m[43m [49m[43mtherm_args[49m[43m[[49m[38;5;241;43m0[39;49m[43m][49m[43m)[49m[43m)[49m
|
||||
[1;32m 522[0m [43m [49m[38;5;28;43;01mif[39;49;00m[43m [49m[43mtherm_args[49m
|
||||
[1;32m 523[0m [43m [49m[38;5;28;43;01melse[39;49;00m[43m [49m[38;5;28;43miter[39;49m[43m([49m[38;5;28;43mzip[39;49m[43m([49m[43mψ_0s[49m[43m,[49m[43m [49m[43mψ_1s[49m[43m,[49m[43m [49m[43mitertools[49m[38;5;241;43m.[39;49m[43mrepeat[49m[43m([49m[38;5;241;43m0[39;49m[43m)[49m[43m)[49m[43m)[49m[43m,[49m
|
||||
[1;32m 524[0m [43m [49m[43mflow_worker[49m[43m,[49m
|
||||
[1;32m 525[0m [43m [49m[38;5;241;43m*[39;49m[38;5;241;43m*[39;49m[43mkwargs[49m[43m,[49m
|
||||
[1;32m 526[0m [43m[49m[43m)[49m
|
||||
|
||||
File [0;32m~/src/hopsflow/hopsflow/util.py:778[0m, in [0;36mensemble_mean[0;34m(arg_iter, function, N, every, save, overwrite_cache, chunk_size, in_flight, gc_sleep)[0m
|
||||
[1;32m 776[0m [38;5;28;01mwhile[39;00m [38;5;28;01mTrue[39;00m:
|
||||
[1;32m 777[0m [38;5;28;01mtry[39;00m:
|
||||
[0;32m--> 778[0m next_val [38;5;241m=[39m [38;5;28;43mnext[39;49m[43m([49m[43mchunk_iterator[49m[43m)[49m
|
||||
[1;32m 779[0m [38;5;28;01mexcept[39;00m [38;5;167;01mStopIteration[39;00m:
|
||||
[1;32m 780[0m next_val [38;5;241m=[39m [38;5;28;01mNone[39;00m
|
||||
|
||||
File [0;32m/nix/store/akzgacnj2l97sldws5cnxjlgv27317xd-python3-3.9.13-env/lib/python3.9/site-packages/tqdm/std.py:1195[0m, in [0;36mtqdm.__iter__[0;34m(self)[0m
|
||||
[1;32m 1192[0m time [38;5;241m=[39m [38;5;28mself[39m[38;5;241m.[39m_time
|
||||
[1;32m 1194[0m [38;5;28;01mtry[39;00m:
|
||||
[0;32m-> 1195[0m [38;5;28;01mfor[39;00m obj [38;5;129;01min[39;00m iterable:
|
||||
[1;32m 1196[0m [38;5;28;01myield[39;00m obj
|
||||
[1;32m 1197[0m [38;5;66;03m# Update and possibly print the progressbar.[39;00m
|
||||
[1;32m 1198[0m [38;5;66;03m# Note: does not call self.update(1) for speed optimisation.[39;00m
|
||||
|
||||
File [0;32m~/src/hopsflow/hopsflow/util.py:693[0m, in [0;36m_grouper[0;34m(n, iterable)[0m
|
||||
[1;32m 690[0m [38;5;124;03m"""Groups the iteartor into tuples of at most length ``n``."""[39;00m
|
||||
[1;32m 692[0m [38;5;28;01mwhile[39;00m [38;5;28;01mTrue[39;00m:
|
||||
[0;32m--> 693[0m chunk [38;5;241m=[39m [38;5;28;43mtuple[39;49m[43m([49m[43mitertools[49m[38;5;241;43m.[39;49m[43mislice[49m[43m([49m[43miterable[49m[43m,[49m[43m [49m[43mn[49m[43m)[49m[43m)[49m
|
||||
[1;32m 694[0m [38;5;28;01mif[39;00m [38;5;129;01mnot[39;00m chunk:
|
||||
[1;32m 695[0m [38;5;28;01mreturn[39;00m
|
||||
|
||||
File [0;32m~/src/hops/hops/core/hierarchy_data.py:1240[0m, in [0;36mHIData.valid_sample_iterator[0;34m(self, iterator)[0m
|
||||
[1;32m 1233[0m [38;5;28;01mdef[39;00m [38;5;21mvalid_sample_iterator[39m([38;5;28mself[39m, iterator: Iterator[T]) [38;5;241m-[39m[38;5;241m>[39m Iterator[T]:
|
||||
[1;32m 1234[0m [38;5;124;03m"""[39;00m
|
||||
[1;32m 1235[0m [38;5;124;03m Takes an ``iterator`` that yields a sequence of items related to[39;00m
|
||||
[1;32m 1236[0m [38;5;124;03m the sequence of samples and yields them if the sample is[39;00m
|
||||
[1;32m 1237[0m [38;5;124;03m actually present in the data.[39;00m
|
||||
[1;32m 1238[0m [38;5;124;03m """[39;00m
|
||||
[0;32m-> 1240[0m [38;5;28;01mfor[39;00m i, item [38;5;129;01min[39;00m [38;5;28menumerate[39m(iterator):
|
||||
[1;32m 1241[0m [38;5;28;01mif[39;00m [38;5;28mself[39m[38;5;241m.[39mhas_sample(i):
|
||||
[1;32m 1242[0m [38;5;28;01myield[39;00m item
|
||||
|
||||
File [0;32m/nix/store/akzgacnj2l97sldws5cnxjlgv27317xd-python3-3.9.13-env/lib/python3.9/site-packages/h5py/_hl/dataset.py:695[0m, in [0;36mDataset.__iter__[0;34m(self)[0m
|
||||
[1;32m 693[0m [38;5;28;01mraise[39;00m [38;5;167;01mTypeError[39;00m([38;5;124m"[39m[38;5;124mCan[39m[38;5;124m'[39m[38;5;124mt iterate over a scalar dataset[39m[38;5;124m"[39m)
|
||||
[1;32m 694[0m [38;5;28;01mfor[39;00m i [38;5;129;01min[39;00m [38;5;28mrange[39m(shape[[38;5;241m0[39m]):
|
||||
[0;32m--> 695[0m [38;5;28;01myield[39;00m [38;5;28;43mself[39;49m[43m[[49m[43mi[49m[43m][49m
|
||||
|
||||
File [0;32mh5py/_objects.pyx:54[0m, in [0;36mh5py._objects.with_phil.wrapper[0;34m()[0m
|
||||
|
||||
File [0;32mh5py/_objects.pyx:55[0m, in [0;36mh5py._objects.with_phil.wrapper[0;34m()[0m
|
||||
|
||||
File [0;32m/nix/store/akzgacnj2l97sldws5cnxjlgv27317xd-python3-3.9.13-env/lib/python3.9/site-packages/h5py/_hl/dataset.py:824[0m, in [0;36mDataset.__getitem__[0;34m(self, args, new_dtype)[0m
|
||||
[1;32m 822[0m mspace [38;5;241m=[39m h5s[38;5;241m.[39mcreate_simple(selection[38;5;241m.[39mmshape)
|
||||
[1;32m 823[0m fspace [38;5;241m=[39m selection[38;5;241m.[39mid
|
||||
[0;32m--> 824[0m [38;5;28;43mself[39;49m[38;5;241;43m.[39;49m[43mid[49m[38;5;241;43m.[39;49m[43mread[49m[43m([49m[43mmspace[49m[43m,[49m[43m [49m[43mfspace[49m[43m,[49m[43m [49m[43marr[49m[43m,[49m[43m [49m[43mmtype[49m[43m,[49m[43m [49m[43mdxpl[49m[38;5;241;43m=[39;49m[38;5;28;43mself[39;49m[38;5;241;43m.[39;49m[43m_dxpl[49m[43m)[49m
|
||||
[1;32m 826[0m [38;5;66;03m# Patch up the output for NumPy[39;00m
|
||||
[1;32m 827[0m [38;5;28;01mif[39;00m arr[38;5;241m.[39mshape [38;5;241m==[39m ():
|
||||
|
||||
[0;31mKeyboardInterrupt[0m:
|
||||
#+end_example
|
||||
:END:
|
||||
|
||||
#+begin_src jupyter-python
|
||||
fig, ax = plt.subplots()
|
||||
|
@ -168,8 +262,8 @@
|
|||
#+RESULTS:
|
||||
:RESULTS:
|
||||
: WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.
|
||||
: <matplotlib.legend.Legend at 0x7f56044adb50>
|
||||
[[file:./.ob-jupyter/89ae9af00f7aa3e773df6d7875eeff5e91d76f4e.svg]]
|
||||
: <matplotlib.legend.Legend at 0x7f2c381dd4c0>
|
||||
[[file:./.ob-jupyter/f3f1da415527bff6b99872e7c62dfdf0f63fbc24.svg]]
|
||||
:END:
|
||||
|
||||
* Analytic
|
||||
|
|
Loading…
Add table
Reference in a new issue