master-thesis/python/energy_flow_proper/05_gaussian_two_baths/config.py

136 lines
3.6 KiB
Python
Raw Normal View History

2022-02-05 11:21:44 +01:00
from hops.core.hierarchy_parameters import HIParams, HiP, IntP, SysP, ResultType
from stocproc.stocproc import StocProc_TanhSinh
from hops.util.bcf_fits import get_ohm_g_w
from hops.util.truncation_schemes import TruncationScheme_Power_multi
import hops.util.bcf
import numpy as np
import hops.util.matrixLib as ml
from stocproc import StocProc_FFT
np.__config__.blas_opt_info = np.__config__.blas_ilp64_opt_info # fix for qutip
import qutip
2022-02-08 21:01:49 +01:00
2022-02-05 11:21:44 +01:00
wc = 2
s = 1
Ω = 1
Λ = 1
γ = 0.1
hops_bcf = hops.util.bcf.OhmicBCF_zeroTemp(
s,
1,
wc,
)
2022-02-08 21:41:59 +01:00
2022-02-08 21:01:49 +01:00
def make_config(
max_HO_level: int,
bcf_terms: int = 4,
t_max: float = 10,
k_fac: float = 1.4,
sp_tol: float = 1e-3,
2022-02-08 21:42:41 +01:00
bcf_scale: list[float] = [0.5, 0.5],
2022-02-08 21:41:59 +01:00
T: float = 0.3,
2022-02-08 21:01:49 +01:00
):
# The BCF fit
g, w = get_ohm_g_w(bcf_terms, s, wc)
integration = IntP(t_max=t_max, t_steps=int(t_max // 0.1))
q_proto = qutip.operators.create(max_HO_level) + qutip.operators.destroy(
max_HO_level
)
p_proto = (
qutip.operators.destroy(max_HO_level) - qutip.operators.create(max_HO_level)
) / 1j
q_1 = qutip.tensor(q_proto, qutip.qeye(max_HO_level))
p_1 = qutip.tensor(p_proto, qutip.qeye(max_HO_level))
q_2 = qutip.tensor(qutip.qeye(max_HO_level), q_proto)
p_2 = qutip.tensor(qutip.qeye(max_HO_level), p_proto)
system = SysP(
H_sys=(
0.25 * (p_1 ** 2 + q_1 ** 2 + p_2 ** 2 + q_2 ** 2)
+ γ / 4 * (q_1 - q_2) ** 2
).full(),
L=[0.5 * q_1.full(), 0.5 * q_2.full()],
psi0=qutip.tensor(
qutip.states.fock(max_HO_level, n=0), qutip.states.fock(max_HO_level, n=0)
)
.full()
.flatten(),
g=[g, g],
w=[w, w],
2022-02-08 21:42:41 +01:00
bcf_scale=bcf_scale,
2022-02-08 21:41:59 +01:00
T=[T, 0],
2022-02-08 21:01:49 +01:00
)
params = HIParams(
SysP=system,
IntP=integration,
HiP=HiP(
nonlinear=True,
result_type=ResultType.ZEROTH_AND_FIRST_ORDER,
truncation_scheme=TruncationScheme_Power_multi.from_g_w(
g=system.g, w=system.w, p=[1, 1], q=[0.5, 0.5], kfac=[k_fac] * 2
2022-02-05 11:21:44 +01:00
),
2022-02-08 21:01:49 +01:00
save_therm_rng_seed=True,
2022-02-05 11:21:44 +01:00
),
2022-02-08 21:01:49 +01:00
Eta=[
StocProc_FFT(
spectral_density=hops.util.bcf.OhmicSD_zeroTemp(
s,
1,
wc,
),
alpha=hops_bcf,
t_max=integration.t_max,
intgr_tol=sp_tol,
intpl_tol=sp_tol,
negative_frequencies=False,
2022-02-05 11:21:44 +01:00
),
2022-02-08 21:01:49 +01:00
StocProc_FFT(
spectral_density=hops.util.bcf.OhmicSD_zeroTemp(
s,
1,
wc,
),
alpha=hops_bcf,
t_max=integration.t_max,
intgr_tol=sp_tol,
intpl_tol=sp_tol,
negative_frequencies=False,
2022-02-05 11:21:44 +01:00
),
2022-02-08 21:01:49 +01:00
],
EtaTherm=[
StocProc_TanhSinh(
spectral_density=hops.util.bcf.Ohmic_StochasticPotentialDensity(
s, 1, wc, beta=1 / system.__non_key__["T"][0]
),
alpha=hops.util.bcf.Ohmic_StochasticPotentialCorrelations(
s, 1, wc, beta=1 / system.__non_key__["T"][0]
),
t_max=integration.t_max,
intgr_tol=sp_tol,
intpl_tol=sp_tol,
negative_frequencies=False,
2022-02-05 11:21:44 +01:00
),
2022-02-08 21:01:49 +01:00
None,
],
)
return params
params = make_config(
2022-02-09 15:18:18 +01:00
max_HO_level=8,
2022-02-08 21:41:59 +01:00
bcf_terms=4,
2022-02-09 11:45:07 +01:00
t_max=50,
2022-02-09 15:19:36 +01:00
k_fac=1.4,
2022-02-09 11:45:07 +01:00
sp_tol=1e-5,
2022-02-08 21:41:59 +01:00
bcf_scale=[.3, .3],
T=.2
2022-02-05 11:21:44 +01:00
)