mirror of
https://github.com/vale981/master-thesis
synced 2025-03-06 02:21:38 -05:00
161 lines
5.3 KiB
TeX
161 lines
5.3 KiB
TeX
|
\documentclass[fontsize=12pt,paper=a4,open=any,parskip=half,
|
||
|
,twoside=false,toc=listof,toc=bibliography,
|
||
|
captions=nooneline,captions=tableabove,english,DIV=16,numbers=noenddot,final]{scrartcl}
|
||
|
|
||
|
\usepackage{../hirostyle}
|
||
|
\addbibresource{/home/hiro/Documents/Projects/UNI/master/masterarb/tex/references.bib}
|
||
|
\synctex=1
|
||
|
\title{Calculating heat flows with HOPS}
|
||
|
\author{Valentin Boettcher}
|
||
|
\date{\today}
|
||
|
\begin{document}
|
||
|
\maketitle
|
||
|
\tableofcontents
|
||
|
|
||
|
\section{One Bath}
|
||
|
|
||
|
\subsection{Linear NMQSD, Zero Temperature}
|
||
|
As in~\cite{Hartmann2017Dec} we choose
|
||
|
\begin{equation}
|
||
|
\label{eq:totalH}
|
||
|
H = H_S + \underbrace{LB^\dagger + L^\dagger B}_{H_I} + H_B
|
||
|
\end{equation}
|
||
|
with the system hamiltonian \(H_S\), the bath hamiltonian
|
||
|
\begin{equation}
|
||
|
\label{eq:bathh}
|
||
|
H_B = \sum_\lambda \omega_\lambda a^\dag a,
|
||
|
\end{equation}
|
||
|
the bath coupling system operator \(L\) and the bath coupling bath
|
||
|
operator
|
||
|
\begin{equation}
|
||
|
\label{eq:bop}
|
||
|
B=\sum_{\lambda} g_{\lambda} a_{\lambda}
|
||
|
\end{equation}
|
||
|
which define the interaction hamiltonian \(H_I\).
|
||
|
|
||
|
We define the heat flow out of the system as in~\cite{Kato2015Aug}
|
||
|
through
|
||
|
\begin{equation}
|
||
|
\label{eq:heatflowdef}
|
||
|
J = - \dv{\ev{H_B}}{t}.
|
||
|
\end{equation}
|
||
|
Working, for now, in the Schr\"odinger picture the Ehrenfest theorem
|
||
|
can be employed to find
|
||
|
\begin{equation}
|
||
|
\label{eq:ehrenfest}
|
||
|
\i\partial_t\ev{H_B} = \ev{[H_B,H]} = \ev{[H_B,H_I]}.
|
||
|
\end{equation}
|
||
|
Thus, we need to calculate
|
||
|
\begin{eqnarray}
|
||
|
\label{eq:calccomm}
|
||
|
\begin{aligned}
|
||
|
[H_B,H_I] &= [H_B, LB^\dag + L^\dag B] \\
|
||
|
&= L[H_B, B^\dag ] + L^\dag [H_B, B] \\
|
||
|
&= L[H_B, B^\dag ] - \hc.
|
||
|
\end{aligned}
|
||
|
\end{eqnarray}
|
||
|
This checks out as the commutator has to be anti-hermitian due to
|
||
|
\cref{eq:ehrenfest}.
|
||
|
Using \([H_B, B^\dag ]=\sum_\lambda \omega_\lambda g^\ast_\lambda
|
||
|
a^\dag_\lambda\) it follows that
|
||
|
\begin{equation}
|
||
|
\label{eq:expcomm}
|
||
|
\begin{aligned}
|
||
|
\ev{[H_B,H_I]} &= \sum_\lambda \omega_\lambda g^\ast_\lambda
|
||
|
\ev{La^\dag_\lambda} - \cc
|
||
|
= \sum_\lambda \omega_\lambda g^\ast_\lambda
|
||
|
\ev{La^\dag_\lambda \eu^{\i \omega t}}_I - \cc\\
|
||
|
&= \frac{1}{\i}\ev{L\partial_t{\sum_\lambda
|
||
|
g^\ast_\lambda a^\dag_\lambda \eu^{\i \omega t}}}_I - \cc
|
||
|
=\frac{1}{\i}\qty(\ev{L\dot{B}^\dag}_I + \cc)
|
||
|
\end{aligned}
|
||
|
\end{equation}
|
||
|
where we switched to the interaction picture with respect to \(H_B\)
|
||
|
in keeping with the standard NMQSD formalism.
|
||
|
In essence this is just the Heisenberg equation for \(H_I\). The
|
||
|
expression for \(J\) follows
|
||
|
\begin{equation}
|
||
|
\label{eq:final_flow}
|
||
|
J(t) = \ev{L^\dag\partial_t B(t)^\dag + L\partial_t B^\dag(t)}_I.
|
||
|
\end{equation}
|
||
|
|
||
|
From this point on, we will assume the interaction picture and drop the
|
||
|
\(I\) subscript.
|
||
|
|
||
|
The two summands yield different expressions in terms of the NMQSD.
|
||
|
For use with HOPS with the final goal of utilizing the auxiliary
|
||
|
states the expression \(\ev{L^\dag\partial_t B(t)}\) should be
|
||
|
evaluated.
|
||
|
|
||
|
We calculate
|
||
|
\begin{equation}
|
||
|
\label{eq:interactev}
|
||
|
\ev{L^\dag\partial_t B(t)}=\ev{L^\dag\partial_t B(t)}{\psi(t)} =
|
||
|
\int \braket{\psi(t)}{z}\mel{z}{L^\dag\partial_tB(t)}{\psi(t)}\frac{\dd[2]{z}}{\pi^N},
|
||
|
\end{equation}
|
||
|
where \(N\) is the total number of environment oscillators and
|
||
|
\(z=\qty(z_{\lambda_1}, z_{\lambda_2}, \ldots)\).
|
||
|
To that end,
|
||
|
\begin{equation}
|
||
|
\label{eq:nmqsdficate}
|
||
|
\begin{aligned}
|
||
|
\mel{z}{L^\dag\partial_tB(t)}{\psi(t)} &= \sum_\lambda g_\lambda
|
||
|
\qty(\partial_t \eu^{-\i\omega_\lambda
|
||
|
t})\partial_{z^\ast_\lambda}\ket{\psi(z^\ast,t)} \\
|
||
|
&= \int_0^t \sum_\lambda g_\lambda
|
||
|
\qty(\partial_t \eu^{-\i\omega_\lambda
|
||
|
t})\pdv{\eta_s^\ast}{z^\ast_\lambda}\fdv{\ket{\psi(z^\ast,t)}}{\eta^\ast_s}\dd{s}\\
|
||
|
&= -\i\int_0^t\dot{\alpha}(t-s)\fdv{\ket{\psi(z^\ast,t)}}{\eta^\ast_s}\dd{s},
|
||
|
\end{aligned}
|
||
|
\end{equation}
|
||
|
where \(\eta^\ast_t\equiv -\i \sum_\lambda g^\ast_\lambda
|
||
|
z^\ast_\lambda \eu^{\i\omega_\lambda t}\).
|
||
|
With this we can write
|
||
|
\begin{equation}
|
||
|
\label{eq:steptoproc}
|
||
|
\ev{L^\dag\partial_t B(t)} = -\i \mathcal{M}_{\eta^\ast}\bra{\psi(\eta,
|
||
|
t)}L^\dag\int_0^t\dd{s} \dot{\alpha}(t-s)\fdv{\eta^\ast_s} \ket{\psi(\eta^\ast,t)}.
|
||
|
\end{equation}
|
||
|
Defining
|
||
|
\begin{equation}
|
||
|
\label{eq:defdop}
|
||
|
D_t = \int_0^t\dd{s} \alpha(t-s)\fdv{\eta^\ast_s}
|
||
|
\end{equation}
|
||
|
as in~\cite{Suess2014Oct} we can write
|
||
|
\begin{equation}
|
||
|
\label{eq:final_flow_nmqsd}
|
||
|
J(t) = -\i \mathcal{M}_{\eta^\ast}\bra{\psi(\eta,
|
||
|
t)}L^\dag\dot{D}_t\ket{\psi(\eta^\ast,t)} + c.c.,
|
||
|
\end{equation}
|
||
|
where we've used that the integral in \(D_t\) can be expanded over the
|
||
|
whole real axis. If we assume \(\alpha = \exp(-w t)\) then
|
||
|
\begin{equation}
|
||
|
\label{eq:hopsj}
|
||
|
J(t) = \i \mathcal{M}_{\eta^\ast}\bra{\psi^{(0)}(\eta,
|
||
|
t)}wL^\dag\ket{\psi^{(1)}(\eta^\ast,t)} + c.c.,
|
||
|
\end{equation}
|
||
|
where \(\ket{\psi^{(1)}(\eta^\ast,t)}\) is the first HOPS hierarchy
|
||
|
state. This can be generalized to any BCF that is a sum of exponentials.
|
||
|
|
||
|
Interestingly one finds that
|
||
|
\begin{equation}
|
||
|
\label{eq:alternative}
|
||
|
\ev{L\partial_t B^\dag(t)} = \i\int\frac{\dd[2]{z}}{\pi^N}
|
||
|
\dot{\eta}_t^\ast \mel{\psi(\eta,t)}{L}{\psi(\eta^\ast,t)}.
|
||
|
\end{equation}
|
||
|
However, this seems numerically problematic because \(\eta^\ast\) is not
|
||
|
differentiable in general. The previous expression has the advantage
|
||
|
that we utilize the first hierarchy states that are already being
|
||
|
calculated as a byproduct.
|
||
|
|
||
|
\printbibliography{}
|
||
|
\end{document}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
%%% Local Variables:
|
||
|
%%% mode: latex
|
||
|
%%% TeX-master: t
|
||
|
%%% End:
|