2021-11-11 16:10:25 +01:00
|
|
|
|
#+PROPERTY: header-args :session zero_temp_new :kernel python :pandoc t
|
2021-11-05 10:19:19 +01:00
|
|
|
|
|
|
|
|
|
* Configuration and Setup
|
|
|
|
|
The main process configuration is to be found [[file:stg.py][here]].
|
|
|
|
|
|
|
|
|
|
** Stochastic Processes
|
|
|
|
|
We then proceed to initialize the stochastic processes.
|
|
|
|
|
|
|
|
|
|
#+begin_src vterm
|
|
|
|
|
python ../hops/sp.py -s stg.py
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
|
|
|
|
Linux ArLeenUX 5.14.14-zen1 x86_64
|
2021-11-11 16:10:25 +01:00
|
|
|
|
16:06:06 up 3 days 23:48, 1 user, load average: 0.81, 1.19, 1.21
|
2021-11-05 10:19:19 +01:00
|
|
|
|
impure ~/D/P/U/m/m/p/e/01_zero_temperature python ../hops/sp.py -s stg.py
|
2021-11-11 16:10:25 +01:00
|
|
|
|
StocProc found in database 'SPCache' at '.'
|
2021-11-05 10:19:19 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
The stochastic process is initialized and cached in ~./SPCache~.
|
|
|
|
|
|
|
|
|
|
* Hops Integration
|
|
|
|
|
We can use multiple avenues.
|
|
|
|
|
|
|
|
|
|
** Local Integration
|
|
|
|
|
#+begin_src vterm :term-name integration
|
|
|
|
|
python ../hops/hi.py -s stg.py
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
|
|
|
|
Linux ArLeenUX 5.14.14-zen1 x86_64
|
2021-11-11 16:10:25 +01:00
|
|
|
|
16:06:15 up 3 days 23:48, 1 user, load average: 1.07, 1.23, 1.22
|
2021-11-05 10:19:19 +01:00
|
|
|
|
impure ~/D/P/U/m/m/p/e/01_zero_temperature python ../hops/hi.py -s stg.py
|
|
|
|
|
run integrate
|
|
|
|
|
init Hi class, use 464 equation
|
|
|
|
|
is up event is False
|
|
|
|
|
wait ...
|
|
|
|
|
[in server process] add args to server ...
|
|
|
|
|
[in server process] befor bring him up
|
2021-11-11 16:10:25 +01:00
|
|
|
|
JobManager started on ArLeenUX:46870 (bytearray(b'HOPS46870'))
|
2021-11-05 10:19:19 +01:00
|
|
|
|
hi server is up
|
|
|
|
|
[in server process] set is_up
|
|
|
|
|
is up event is now True
|
2021-11-11 16:10:25 +01:00
|
|
|
|
[TET 12.69ms [0.0c/s] TTG -- 0.0%
|
2021-11-05 10:19:19 +01:00
|
|
|
|
|
2021-11-11 16:10:25 +01:00
|
|
|
|
/nix/store/5v3326rzsryzdkk2q5kimqvf0i20wvzv-python3-3.9.4-env/lib/python3.9/site
|
|
|
|
|
anager/jobmanager.py:130: UserWarning: num_threads could not be set, MKL / openb
|
2021-11-05 10:19:19 +01:00
|
|
|
|
warnings.warn("num_threads could not be set, MKL / openblas not found")
|
2021-11-11 16:10:25 +01:00
|
|
|
|
/nix/store/5v3326rzsryzdkk2q5kimqvf0i20wvzv-python3-3.9.4-env/lib/python3.9/site
|
|
|
|
|
anager/jobmanager.py:130: UserWarning: num_threads could not be set, MKL / openb
|
2021-11-05 10:19:19 +01:00
|
|
|
|
warnings.warn("num_threads could not be set, MKL / openblas not found")
|
2021-11-11 16:10:25 +01:00
|
|
|
|
/nix/store/5v3326rzsryzdkk2q5kimqvf0i20wvzv-python3-3.9.4-env/lib/python3.9/site
|
|
|
|
|
anager/jobmanager.py:130: UserWarning: num_threads could not be set, MKL / openb
|
2021-11-05 10:19:19 +01:00
|
|
|
|
warnings.warn("num_threads could not be set, MKL / openblas not found")
|
2021-11-11 16:10:25 +01:00
|
|
|
|
/nix/store/5v3326rzsryzdkk2q5kimqvf0i20wvzv-python3-3.9.4-env/lib/python3.9/site
|
|
|
|
|
[TET 1.01s [0.0c/s] TTG -- 0.0%
|
|
|
|
|
res_q #0 0/s 0kB|rem.:500, done:0, failed:0, prog.:0
|
|
|
|
|
w1:00:00:46 [14.7c/min] #11 - 2.25s [245.0c/s] [==================>
|
|
|
|
|
w2:00:00:46 [15.0c/min] #11 - 1.90s [241.6c/s] [===============>
|
|
|
|
|
w1:00:00:47 [14.7c/min] #11 - 3.25s [255.6c/s] [============================>
|
|
|
|
|
] TTG 1.00s4.8c/min] #11 - 1.33s [221.7c/s] [=========>
|
|
|
|
|
w2:00:00:47 [15.0c/min] #11 - 2.91s [243.3c/s] [========================>
|
|
|
|
|
] TTG 2.00s [57.3c/min] TTG 00:07:58 8.8% ETA 20211110_16:15:03
|
|
|
|
|
w3:00:00:47 [14.7c/min] #11 - 1.67s [264.0c/s] [==============>
|
|
|
|
|
] TTG 3.00sGB/s 315.9GB|rem.:452, done:44, failed:0, prog.:4
|
|
|
|
|
w4:00:00:47 [14.8c/min] #11 - 2.33s [231.9c/s] [==================>
|
|
|
|
|
w1:00:00:48 [14.8c/min] #12 - 292.64ms [160.6c/s] [=>
|
|
|
|
|
] TTG 6.00s326.1GB/s
|
|
|
|
|
w2:00:00:48 [15.0c/min] #11 - 3.91s [231.6c/s] [==============================>
|
|
|
|
|
] TTG 1.00s [57.3c/min] TTG 00:07:58 8.8% ETA 20211110_16:15:04
|
|
|
|
|
w3:00:00:48 [14.7c/min] #11 - 2.67s [238.4c/s] [=====================>
|
|
|
|
|
w1:00:08:43 [15.9c/min] #126 - [TET 996.21ms [0.0c/s] TTG -- 0.0% ETA -- ORT --]
|
|
|
|
|
w2:00:08:43 [15.7c/min] #125 - [TET 2.26s [0.0c/s] TTG -- 0.0% ETA -- ORT --]
|
|
|
|
|
w3:00:08:43 [15.5c/min] #124 - [TET 1.69s [0.0c/s] TTG -- 0.0% ETA -- ORT --]
|
|
|
|
|
w4:00:08:43 [16.5c/min] #125 - [TET 667.44ms [0.0c/s] TTG -- 0.0% ETA -- ORT --]
|
|
|
|
|
local res_q 0 344GB/s
|
|
|
|
|
,********************************.00ms---------100%---------ETA-20211110_16:15:01-ORT-00:08:43]
|
|
|
|
|
,********************************0, done:500, failed:0, prog.:0
|
|
|
|
|
,** the client has finished early! stop the server
|
|
|
|
|
,********************************
|
|
|
|
|
,********************************
|
|
|
|
|
[TET-00:08:44-----[1.0c/s]-TTG-0.00ms---------100%---------ETA-20211110_16:15:02-ORT-00:08:44]
|
|
|
|
|
res_q #0 7.918GB/s 3.506TB|rem.:0, done:500, failed:0, prog.:0
|
|
|
|
|
[in server process] server has joined!
|
2021-11-05 10:19:19 +01:00
|
|
|
|
|
|
|
|
|
############## in JM SERVER EXIT
|
|
|
|
|
|
|
|
|
|
|
2021-11-11 16:10:25 +01:00
|
|
|
|
HI_Server start at 2021-11-10 16:06:18.129421 | runtime 5.260e+02s
|
|
|
|
|
HI_Server total number of jobs : 500
|
|
|
|
|
| processed : 500
|
|
|
|
|
| succeeded : 500
|
|
|
|
|
| failed : 0
|
|
|
|
|
| timing in sec: min 2.973e+00 | max 7.906e+00 | avr 4.164e+00
|
|
|
|
|
| not processed : 0
|
|
|
|
|
| queried : 0
|
|
|
|
|
| not queried yet : 0
|
2021-11-05 10:19:19 +01:00
|
|
|
|
,* has joined
|
2021-11-11 16:10:25 +01:00
|
|
|
|
server process is not running anymore (exit with 0)
|
2021-11-05 10:19:19 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
And there we go. It is better to run the above command in a
|
|
|
|
|
vterm-session.
|
|
|
|
|
|
|
|
|
|
** Remote/Distributed Integration
|
|
|
|
|
We start the server locally.
|
|
|
|
|
#+begin_src vterm :term-name local-server
|
|
|
|
|
python ../hops/hi.py -s stg.py server
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
|
|
|
|
Linux ArLeenUX 5.14.14-zen1 x86_64
|
2021-11-11 16:10:25 +01:00
|
|
|
|
18:00:32 up 4 days 1:42, 1 user, load average: 2.45, 2.86, 2.99
|
2021-11-05 10:19:19 +01:00
|
|
|
|
impure ~/D/P/U/m/m/p/e/01_zero_temperature python ../hops/hi.py -s stg.py server
|
|
|
|
|
run server
|
|
|
|
|
init Hi class, use 464 equation
|
2021-11-11 16:10:25 +01:00
|
|
|
|
JobManager started on ArLeenUX:35254 (bytearray(b'SBM2'))
|
2021-11-05 10:19:19 +01:00
|
|
|
|
hi server is running
|
2021-11-11 16:10:25 +01:00
|
|
|
|
[TET-00:06:01-----[2.5c/s]-TTG-0.00ms---------100%---------ETA-20211110_18:06:38-ORT-00:06:01]
|
|
|
|
|
res_q #0 17.85GB/s 3.506TB|rem.:0, done:500, failed:0, prog.:0
|
2021-11-05 10:19:19 +01:00
|
|
|
|
|
|
|
|
|
############## in JM SERVER EXIT
|
|
|
|
|
|
|
|
|
|
|
2021-11-11 16:10:25 +01:00
|
|
|
|
HI_Server start at 2021-11-10 18:00:36.345825 | runtime 3.640e+02s
|
|
|
|
|
HI_Server total number of jobs : 500
|
|
|
|
|
| processed : 500
|
|
|
|
|
| succeeded : 500
|
2021-11-05 10:19:19 +01:00
|
|
|
|
| failed : 0
|
2021-11-11 16:10:25 +01:00
|
|
|
|
| timing in sec: min 3.446e+00 | max 6.235e+00 | avr 5.008e+00
|
|
|
|
|
| not processed : 0
|
2021-11-05 10:19:19 +01:00
|
|
|
|
| queried : 0
|
2021-11-11 16:10:25 +01:00
|
|
|
|
| not queried yet : 0
|
2021-11-05 10:19:19 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
And jack in with a remote client. In this case my box at home.
|
|
|
|
|
|
|
|
|
|
* Using the Data
|
2021-11-11 16:10:25 +01:00
|
|
|
|
** Jupyter Setup
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
%load_ext autoreload
|
|
|
|
|
%autoreload 2
|
|
|
|
|
import matplotlib.pyplot as plt
|
2021-11-11 16:39:02 +01:00
|
|
|
|
%config InlineBackend.figure_formats = ['svg']
|
|
|
|
|
%matplotlib inline
|
2021-11-11 16:10:25 +01:00
|
|
|
|
import numpy as np
|
|
|
|
|
plt.style.use('ggplot')
|
|
|
|
|
import qutip
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
2021-11-11 16:39:02 +01:00
|
|
|
|
: The autoreload extension is already loaded. To reload it, use:
|
|
|
|
|
: %reload_ext autoreload
|
2021-11-11 16:10:25 +01:00
|
|
|
|
|
|
|
|
|
** Check the Freshness of the Data
|
|
|
|
|
This doesn't check for modifications in this file though!
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
from deps import deps
|
|
|
|
|
|
|
|
|
|
deps.report()
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
: Is fresh: True
|
|
|
|
|
: Overall Hash: b69f09d7a1ad29b11fe2af2e1574161333632d46
|
|
|
|
|
|
|
|
|
|
~True~ means that no important code has changed. In this case it even
|
|
|
|
|
checks if we have all the samples.
|
|
|
|
|
|
|
|
|
|
** Load the Data
|
|
|
|
|
Stghelper seems to be what we want.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
import stg_helper
|
|
|
|
|
import stg
|
|
|
|
|
import hopsflow
|
|
|
|
|
from hopsflow import util
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
|
|
|
|
Now let's load the system parameters.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
system_params = stg_helper.get_system_param(stg)
|
|
|
|
|
system_params
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
#+begin_example
|
|
|
|
|
H_dynamic : []
|
|
|
|
|
H_sys : Operator with format 'coo' and shape(2, 2)
|
|
|
|
|
(0, 0) -0.5
|
|
|
|
|
(1, 1) 0.5
|
|
|
|
|
L : Operator with format 'coo' and shape(2, 2)
|
|
|
|
|
(0, 1) 0.5
|
|
|
|
|
(1, 0) 0.5
|
|
|
|
|
bcf_scale : 0.8
|
|
|
|
|
g : [-0.06469402-0.02291455j -0.51837826-0.63817493j -0.9180341 -0.03207301j
|
|
|
|
|
0.79032868-3.79162312j 0.92537272+5.45668527j 7.74372319-0.97260702j]
|
|
|
|
|
psi0 : [0 1]
|
|
|
|
|
w : [ 0.33112135 +0.0369207j 1.4655583 +0.35463741j
|
|
|
|
|
20.83418848+27.9612112j 3.94583654 +1.66419407j
|
|
|
|
|
13.81649632+13.01348981j 8.09528316 +5.28092745j]
|
|
|
|
|
--- extra info ---
|
|
|
|
|
T : 0.0
|
|
|
|
|
T_method : stoc_pot
|
|
|
|
|
gw_info : None
|
|
|
|
|
len_gw : None
|
|
|
|
|
#+end_example
|
|
|
|
|
|
|
|
|
|
Now we read the trajectory data.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
class result:
|
|
|
|
|
with stg_helper.get_hierarchy_data(stg, read_only=True) as hd:
|
|
|
|
|
N = hd.get_samples()
|
|
|
|
|
τ = hd.get_time()
|
|
|
|
|
ρ = hd.get_rho_t()
|
|
|
|
|
ψ_1 = np.array(hd.aux_states)[0:N]
|
|
|
|
|
ψ = np.array(hd.stoc_traj)[0:N]
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
|
|
|
|
** Calculate System Energy
|
|
|
|
|
Simple sanity check.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
e_sys = util.operator_expectation(result.ρ, system_params.H_sys.todense())
|
|
|
|
|
plt.plot(result.τ, e_sys)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2021-11-11 16:39:02 +01:00
|
|
|
|
| <matplotlib.lines.Line2D | at | 0x7fb88c86eb80> |
|
|
|
|
|
[[file:./.ob-jupyter/5b677bedf5ac789f36752d1ab34a08c7967f7e54.svg]]
|
2021-11-11 16:10:25 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
The energy bleeds out of the system. We don't reach the steady state
|
|
|
|
|
yet. Also we don't loose all the energy.
|
|
|
|
|
|
|
|
|
|
The energy eigenvalues of the system are.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
np.linalg.eig(system_params.H_sys.todense())[0]
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
: array([-0.5, 0.5])
|
|
|
|
|
|
|
|
|
|
The begin and and values of the system energy expectation are.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
e_sys[0], e_sys[-1]
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
| 0.5 | -0.44786036208449925 |
|
|
|
|
|
|
|
|
|
|
And the total energy lost is:
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
e_sys[0] - e_sys[-1]
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
: 0.9478603620844992
|
|
|
|
|
|
|
|
|
|
We do start in the state.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
system_params.psi0
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
: array([0, 1])
|
|
|
|
|
|
|
|
|
|
** Calculate the Heat Flow
|
|
|
|
|
Now let's calculate the heatflow. In this simple case it is engouh to
|
|
|
|
|
know the first hierarchy states.
|
|
|
|
|
|
|
|
|
|
First we set up some parameter objects for the alogrithm.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
hf_system = hopsflow.SystemParams(
|
|
|
|
|
system_params.L.todense(), stg.__g, stg.__w, stg.__bcf_scale, stg.__HI_nonlinear
|
|
|
|
|
)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
|
|
|
|
|
Now we can apply our tooling to one trajectory for testing.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
hf_sample_run = hopsflow.HOPSRun(result.ψ[0], result.ψ_1[0], hf_system)
|
|
|
|
|
first_flow = hopsflow.flow_trajectory_coupling(hf_sample_run, hf_system)
|
|
|
|
|
plt.plot(result.τ, first_flow)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2021-11-11 16:39:02 +01:00
|
|
|
|
| <matplotlib.lines.Line2D | at | 0x7fb88c94aa00> |
|
|
|
|
|
[[file:./.ob-jupyter/960bb80995da8078fd443f2f22142c6b1ebb6286.svg]]
|
2021-11-11 16:10:25 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
And now for all trajectories.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
full_flow = hopsflow.heat_flow_ensemble(result.ψ, result.ψ_1, hf_system)
|
|
|
|
|
plt.plot(result.τ, full_flow)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2021-11-11 16:39:02 +01:00
|
|
|
|
| <matplotlib.lines.Line2D | at | 0x7fb88cb9ec10> |
|
|
|
|
|
[[file:./.ob-jupyter/d25ba1fef373188a056f2e0d6a4c5f4a92510ea4.svg]]
|
2021-11-11 16:10:25 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
We can integrate the energy change in the bath:
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
e_bath = util.integrate_array(-full_flow, result.τ)
|
|
|
|
|
plt.plot(result.τ, e_bath)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2021-11-11 16:39:02 +01:00
|
|
|
|
| <matplotlib.lines.Line2D | at | 0x7fb88ebd6220> |
|
|
|
|
|
[[file:./.ob-jupyter/90dd6b7d95f9dad5d70aea5d76c16a1ce4a37c06.svg]]
|
2021-11-11 16:10:25 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
** Calculate the Interaction Energy
|
|
|
|
|
First we calculate it from energy conservation.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
e_int = 1/2 - e_sys - e_bath
|
|
|
|
|
plt.plot(result.τ, e_int)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2021-11-11 16:39:02 +01:00
|
|
|
|
| <matplotlib.lines.Line2D | at | 0x7fb88eaca400> |
|
|
|
|
|
[[file:./.ob-jupyter/6d558a7d7d44f57dc0d2887138d004ae28e89c3d.svg]]
|
2021-11-11 16:10:25 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
And then from first principles:
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
e_int_ex = hopsflow.interaction_energy_ensemble(result.ψ, result.ψ_1, hf_system)
|
|
|
|
|
plt.plot(result.τ, e_int_ex)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2021-11-11 16:39:02 +01:00
|
|
|
|
| <matplotlib.lines.Line2D | at | 0x7fb88cb120d0> |
|
|
|
|
|
[[file:./.ob-jupyter/c97181cc348cc23ea6d58a6e438142e93720e021.svg]]
|
2021-11-11 16:10:25 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
And both together:
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
plt.plot(result.τ, e_int)
|
|
|
|
|
plt.plot(result.τ, e_int_ex)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2021-11-11 16:39:02 +01:00
|
|
|
|
| <matplotlib.lines.Line2D | at | 0x7fb88cb09160> |
|
|
|
|
|
[[file:./.ob-jupyter/0af49b86e497454d433dc6b73558e7ab843e62c5.svg]]
|
2021-11-11 16:10:25 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
** Scratch
|
|
|
|
|
So the ~G~ and ~W~ do function as expected
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
t = np.linspace(0, stg.t_max, 100)
|
|
|
|
|
#plt.plot(t, stg.__bcf(t).real)
|
|
|
|
|
plt.plot(t, stg.__bcf(t).imag)
|
|
|
|
|
plt.plot(t, hopsflow.util.α_apprx(t, stg.__g, stg.__w).imag)
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
:RESULTS:
|
2021-11-11 16:39:02 +01:00
|
|
|
|
| <matplotlib.lines.Line2D | at | 0x7fb88c76ca00> |
|
|
|
|
|
[[file:./.ob-jupyter/bcde1eb021f8bf933d77cec89f448be7707205c8.svg]]
|
2021-11-11 16:10:25 +01:00
|
|
|
|
:END:
|
|
|
|
|
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
path = os.path.dirname(hopsflow.__file__)
|
|
|
|
|
path
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
: /home/hiro/Documents/Projects/UNI/master/masterarb/python/energy_flow_proper/hopsflow
|
|
|
|
|
|
|
|
|
|
* Update Dependency Hash
|
|
|
|
|
When we're done we update the dependency hash. This helps us to check
|
|
|
|
|
if we have to recompute anything later on.
|
|
|
|
|
#+begin_src jupyter-python
|
|
|
|
|
deps.write_hash()
|
|
|
|
|
deps.get_hash()[0]
|
|
|
|
|
#+end_src
|
|
|
|
|
|
|
|
|
|
#+RESULTS:
|
|
|
|
|
: b69f09d7a1ad29b11fe2af2e1574161333632d46
|