master-thesis/python/energy_flow_proper/01_zero_temperature/notebook.org

363 lines
13 KiB
Org Mode
Raw Normal View History

2022-01-17 17:40:33 +01:00
#+PROPERTY: header-args :session 01_zero_temp :kernel python :pandoc t :async yes
2021-11-05 10:19:19 +01:00
* Configuration and Setup
2022-01-17 17:40:33 +01:00
This will be tangled into the [[file:config.py][config file]] that can be used with the HOPS cli.
#+begin_src jupyter-python :results none :tangle config.py
from hops.core.hierarchy_parameters import HIParams, HiP, IntP, SysP, ResultType
from hops.core.hierarchyLib import HI
from hops.util.bcf_fits import get_ohm_g_w
from hops.util.truncation_schemes import TruncationScheme_Power_multi
import hops.util.bcf
import numpy as np
import hops.util.matrixLib as ml
from stocproc import StocProc_FFT
wc = 5
s = 1
# The BCF fit
bcf_terms = 6
g, w = get_ohm_g_w(bcf_terms, s, wc)
integration = IntP(t_max=30, t_steps=int(30 // 0.01))
system = SysP(
H_sys=0.5 * np.array([[-1, 0], [0, 1]]),
L=0.5 * np.array([[0, 1], [1, 0]]),
psi0=np.array([0, 1]),
g=g,
w=w,
bcf_scale=0.8,
T=0,
)
2021-11-05 10:19:19 +01:00
2022-01-17 17:40:33 +01:00
params = HIParams(
SysP=system,
IntP=integration,
HiP=HiP(
nonlinear=True,
normalized_by_hand=True,
result_type=ResultType.ZEROTH_AND_FIRST_ORDER,
truncation_scheme=TruncationScheme_Power_multi.from_g_w(
g=g, w=w, p=1, q=0.5, kfac=1.4
),
),
Eta=StocProc_FFT(
spectral_density=hops.util.bcf.OhmicSD_zeroTemp(
s,
1,
wc,
),
alpha=hops.util.bcf.OhmicBCF_zeroTemp(
s,
1,
wc,
),
t_max=integration.t_max,
intgr_tol=1e-3,
intpl_tol=1e-3,
negative_frequencies=False,
),
EtaTherm=None,
)
2021-11-05 10:19:19 +01:00
#+end_src
* Hops Integration
We can use multiple avenues.
** Local Integration
#+begin_src vterm :term-name integration
2022-01-17 17:40:33 +01:00
hi 500 integrate
2021-11-05 10:19:19 +01:00
#+end_src
2022-01-17 17:40:33 +01:00
#+RESULTS:
:RESULTS:
Linux ArLeenUX 5.15.11-zen1 x86_64
14:45:17 up 2 days 18:10, 1 user, load average: 1.55, 1.48, 1.44
impure  ~/D/P/U/m/m/p/e/01_zero_temperature  hi 500 integrate
Loading the configuration from config.py. This might take a while... /
JobManager started on ArLeenUX:36931 (bytearray(b'HOPS36931'))
[TET 6.88ms [0.0c/s] TTG -- 0.0% ETA -- ORT --]
/nix/store/h9pzzn81vrj2vzhavbjgv101yc52qpx0-python3-3.9.9-env/lib/python3.9/site-packages/jobmanager/jobmanager.py:130: UserWa
rning: num_threads could not be set, MKL / openblas not found
warnings.warn("num_threads could not be set, MKL / openblas not found")
/nix/store/h9pzzn81vrj2vzhavbjgv101yc52qpx0-python3-3.9.9-env/lib/python3.9/site-packages/jobmanager/jobmanager.py:130: UserWa
rning: num_threads could not be set, MKL / openblas not found
warnings.warn("num_threads could not be set, MKL / openblas not found")
/nix/store/h9pzzn81vrj2vzhavbjgv101yc52qpx0-python3-3.9.9-env/lib/python3.9/site-packages/jobmanager/jobmanager.py:130: UserWa
rning: num_threads could not be set, MKL / openblas not found
warnings.warn("num_threads could not be set, MKL / openblas not found")
/nix/store/h9pzzn81vrj2vzhavbjgv101yc52qpx0-python3-3.9.9-env/lib/python3.9/site-packages/jobmanager/jobmanager.py:130: UserWa
[TET 1.01s [0.0c/s] TTG -- 0.0% ETA -- ORT --]
res_q #0 0/s 0kB|rem.:492, done:0, failed:0, prog.:0
w1:00:00:14 [5.3c/min] #1 - 2.72s [82.5c/s] [==============> ] TTG 00:00:10
w2:00:00:14 [5.0c/min] #1 - 2.09s [82.4c/s] [===========> ] TTG 00:00:11
w3:00:00:14 [5.1c/min] #1 - 2.20s [82.8c/s] [============> ] TTG 00:00:10
w4:00:00:14 [5.0c/min] #1 - 1.97s [82.9c/s] [==========> ] TTG 00:00:11
local res_q 0 285.1GB/s
[TET 00:00:14 [18.4c/min] TTG 00:26:29 0.8% ETA 20220117_15:12:02 ORT 00:26:43]
res_q #0 2.122GB/s 28.72GB|rem.:484, done:4, failed:0, prog.:4
^Ccapi_return is NULL
Call-back cb_f_in_zvode__user__routines failed.
capi_return is NULL
Call-back cb_f_in_zvode__user__routines failed.
capi_return is NULL
Call-back cb_f_in_zvode__user__routines failed.
SystemExit, quit processing, reinsert current argument, please wait
SystemExit, quit processing, reinsert current argument, please wait
capi_return is NULL
Call-back cb_f_in_zvode__user__routines failed.
[TET 00:00:15 [18.4c/min] TTG 00:26:29 0.8% ETA 20220117_15:12:03 ORT 00:26:44]
res_q #0 1.976GB/s 28.72GB|rem.:484, done:4, failed:0, prog.:4
############## in JM SERVER EXIT
HIServer start at 2022-01-17 14:45:19.308956 | runtime 1.500e+01s
HIServer total number of jobs : 492
w1:00:00:15 [5.3c/min] #1 - [TET-3.72s----[74.9c/s]-TTG>00:00:10 27.9% ETA 20220117_14:45:45 ORT 00:00:13]
w2:00:00:15 [5.0c/min] #1 - [TET-3.10s----[72.0c/s] TTG 00:00:11 22.3% ETA 20220117_14:45:46 ORT 00:00:14]
w3:00:00:15 [5.1c/min] #1 - [TET-3.21s----[73.9c/s]>TTG 00:00:11 23.7% ETA 20220117_14:45:46 ORT 00:00:14]
w4:00:00:15 [5.0c/min] #1 - [TET-2.97s----[73.6c/s] TTG 00:00:11 21.9% ETA 20220117_14:45:46 ORT 00:00:13]
local res_q 0 285.1GB/s
impure  ~/D/P/U/m/m/p/e/01_zero_temperature  exit 18.9s
:END:
2021-11-05 10:19:19 +01:00
And there we go. It is better to run the above command in a
vterm-session.
** Remote/Distributed Integration
We start the server locally.
#+begin_src vterm :term-name local-server
2022-01-17 17:40:33 +01:00
hi 1000 start-server
2021-11-05 10:19:19 +01:00
#+end_src
#+RESULTS:
:RESULTS:
2022-01-17 17:40:33 +01:00
Linux ArLeenUX 5.15.11-zen1 x86_64
16:34:02 up 2 days 19:58, 1 user, load average: 1.08, 1.67, 2.52
impure  ~/D/P/U/m/m/p/e/01_zero_temperature  hi 1000 start-server
Loading the configuration from config.py. This might take a while... /
JobManager started on ArLeenUX:42524 (bytearray(b'hierarchy'))
[TET-00:12:05--[43.6c/min]-TTG-0.00ms-------------------------100%-------------------------ETA-20220117_16:46:11-ORT-00:12:05]
res_q #0 14.84GB/s 10.51TB|rem.:0, done:500, failed:0, prog.:0
2021-11-05 10:19:19 +01:00
############## in JM SERVER EXIT
2022-01-17 17:40:33 +01:00
HIServer start at 2022-01-17 16:34:05.075876 | runtime 7.280e+02s
HIServer total number of jobs : 500
| processed : 500
| succeeded : 500
| failed : 0
| timing in sec: min 1.386e+01 | max 4.145e+01 | avr 2.478e+01
| not processed : 0
| queried : 0
| not queried yet : 0
2021-11-05 10:19:19 +01:00
:END:
And jack in with a remote client. In this case my box at home.
2022-01-17 17:40:33 +01:00
** Client
Starting a client is trivial.
2021-11-11 16:10:25 +01:00
2022-01-17 17:40:33 +01:00
#+begin_src vterm :term-name local-client
client localhost
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
2022-01-17 17:40:33 +01:00
:RESULTS:
Linux ArLeenUX 5.15.11-zen1 x86_64
16:34:08 up 2 days 19:58, 1 user, load average: 1.07, 1.66, 2.51
impure  ~/D/P/U/m/m/p/e/01_zero_temperature  client localhost
/nix/store/zwwf4gkrcx2ly273ivhn7a0bwwl0r9ki-python3-3.9.9-env/lib/python3.9/site-packages/jobmanager/jobmanager.py:130: UserWa
rning: num_threads could not be set, MKL / openblas not found
warnings.warn("num_threads could not be set, MKL / openblas not found")
/nix/store/zwwf4gkrcx2ly273ivhn7a0bwwl0r9ki-python3-3.9.9-env/lib/python3.9/site-packages/jobmanager/jobmanager.py:130: UserWa
rning: num_threads could not be set, MKL / openblas not found
warnings.warn("num_threads could not be set, MKL / openblas not found")
/nix/store/zwwf4gkrcx2ly273ivhn7a0bwwl0r9ki-python3-3.9.9-env/lib/python3.9/site-packages/jobmanager/jobmanager.py:130: UserWa
rning: num_threads could not be set, MKL / openblas not found
warnings.warn("num_threads could not be set, MKL / openblas not found")
/nix/store/zwwf4gkrcx2ly273ivhn7a0bwwl0r9ki-python3-3.9.9-env/lib/python3.9/site-packages/jobmanager/jobmanager.py:130: UserWa
rning: num_threads could not be set, MKL / openblas not found
warnings.warn("num_threads could not be set, MKL / openblas not found")
w1:00:11:55 [2.0c/min] #23 - [TET 7.38s [0.0c/s] TTG -- 0.0% ETA -- ORT --]
w2:00:11:55 [2.0c/min] #23 - [TET 4.46s [0.0c/s] TTG -- 0.0% ETA -- ORT --]
w3:00:11:55 [2.1c/min] #23 - [TET 5.82s [0.0c/s] TTG -- 0.0% ETA -- ORT --]
w4:00:11:55 [2.1c/min] #23 - [TET 9.32s [0.0c/s] TTG -- 0.0% ETA -- ORT --]
local res_q 0 416.7GB/s
:END:
2021-11-11 16:10:25 +01:00
2022-01-17 17:40:33 +01:00
* Using the Data
** Jupyter Setup
#+begin_src jupyter-python :results none
import matplotlib.pyplot as plt
import numpy as np
import utilities as ut
2021-11-11 16:10:25 +01:00
#+end_src
2022-01-17 17:40:33 +01:00
** Load the Data
#+begin_src jupyter-python :results none
from hopsflow import hopsflow, util
from hops.core.hierarchyLib import HI
2021-11-11 16:10:25 +01:00
#+end_src
Now we read the trajectory data.
#+begin_src jupyter-python
class result:
2022-01-17 17:40:33 +01:00
with HI(params, 500).get_data(read_only=True) as hd:
N = hd.samples
2021-11-11 16:10:25 +01:00
τ = hd.get_time()
ρ = hd.get_rho_t()
ψ_1 = np.array(hd.aux_states)[0:N]
ψ = np.array(hd.stoc_traj)[0:N]
2022-01-17 17:40:33 +01:00
result.N
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
2022-01-17 17:40:33 +01:00
: 1000
2021-11-11 16:10:25 +01:00
** Calculate System Energy
Simple sanity check.
#+begin_src jupyter-python
2022-01-17 17:40:33 +01:00
_, e_sys, σ_e_sys = util.operator_expectation_ensemble(
iter(result.ψ),
system.H_sys,
result.N,
params.HiP.nonlinear,
save="./results/energy.npy"
)
plt.errorbar(result.τ, e_sys.real, yerr=σ_e_sys.real, ecolor="yellow")
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
:RESULTS:
2022-01-17 17:40:33 +01:00
: 100% 999/999 [00:00<00:00, 1645.43it/s]
: <ErrorbarContainer object of 3 artists>
[[file:./.ob-jupyter/bd7fe1b1f16f9711d71689389818fa54480dba99.svg]]
2021-11-11 16:10:25 +01:00
:END:
The energy bleeds out of the system. We don't reach the steady state
yet. Also we don't loose all the energy.
The energy eigenvalues of the system are.
#+begin_src jupyter-python
2022-01-17 17:40:33 +01:00
np.linalg.eig(system.H_sys)[0]
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
: array([-0.5, 0.5])
The begin and and values of the system energy expectation are.
#+begin_src jupyter-python
2022-01-17 17:40:33 +01:00
e_sys[0].real, e_sys[-1].real
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
2022-01-17 17:40:33 +01:00
| 0.5 | -0.44770384926040235 |
2021-11-11 16:10:25 +01:00
And the total energy lost is:
#+begin_src jupyter-python
2022-01-17 17:40:33 +01:00
e_sys[0].real - e_sys[-1].real
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
2022-01-17 17:40:33 +01:00
: 0.9477038492604024
2021-11-11 16:10:25 +01:00
We do start in the state.
#+begin_src jupyter-python
2022-01-17 17:40:33 +01:00
system.psi0
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
: array([0, 1])
** Calculate the Heat Flow
Now let's calculate the heatflow. In this simple case it is engouh to
know the first hierarchy states.
First we set up some parameter objects for the alogrithm.
2022-01-17 17:40:33 +01:00
#+begin_src jupyter-python :results none
2021-11-11 16:10:25 +01:00
hf_system = hopsflow.SystemParams(
2022-01-17 17:40:33 +01:00
system.L, system.g, system.w, system.bcf_scale, params.HiP.nonlinear
2021-11-11 16:10:25 +01:00
)
#+end_src
Now we can apply our tooling to one trajectory for testing.
#+begin_src jupyter-python
hf_sample_run = hopsflow.HOPSRun(result.ψ[0], result.ψ_1[0], hf_system)
first_flow = hopsflow.flow_trajectory_coupling(hf_sample_run, hf_system)
2022-01-17 17:40:33 +01:00
with ut.hiro_style():
plt.plot(result.τ, first_flow)
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
2022-01-17 17:40:33 +01:00
[[file:./.ob-jupyter/c7984b39bab2dfd43f7a9f95bdf0badd202394a0.svg]]
2021-11-11 16:10:25 +01:00
And now for all trajectories.
#+begin_src jupyter-python
2022-01-17 17:40:33 +01:00
full_flow = hopsflow.heat_flow_ensemble(
result.ψ, result.ψ_1, hf_system, result.N, every=result.N // 10, save="results/flow.npy"
)
with ut.hiro_style():
_, ax = ut.plot_convergence(result.τ, full_flow, transform=lambda y: -y)
ax.legend()
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
:RESULTS:
2022-01-17 17:40:33 +01:00
: 100% 999/999 [00:01<00:00, 503.21it/s]
[[file:./.ob-jupyter/c998467651c2660a92b64ec40f17672cbd6f16aa.svg]]
2021-11-11 16:10:25 +01:00
:END:
We can integrate the energy change in the bath:
#+begin_src jupyter-python
2022-01-17 17:40:33 +01:00
e_bath = util.integrate_array(-full_flow[-1][1], result.τ)
2021-11-11 16:10:25 +01:00
plt.plot(result.τ, e_bath)
#+end_src
#+RESULTS:
:RESULTS:
2022-01-17 17:40:33 +01:00
| <matplotlib.lines.Line2D | at | 0x7f700280b220> |
[[file:./.ob-jupyter/1ef90eca2ed89295be26af97745a08d32a9aa037.svg]]
2021-11-11 16:10:25 +01:00
:END:
** Calculate the Interaction Energy
First we calculate it from energy conservation.
#+begin_src jupyter-python
2022-01-17 17:40:33 +01:00
e_int = (1/2 - e_sys - e_bath).real
with ut.hiro_style():
plt.plot(result.τ, e_int)
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
2022-01-17 17:40:33 +01:00
[[file:./.ob-jupyter/10f25f6b2f73d65ae8fb7775fef8dce0379fd08e.svg]]
2021-11-11 16:10:25 +01:00
And then from first principles:
#+begin_src jupyter-python
2022-01-17 17:40:33 +01:00
_, e_int_ex, σ_e_int_ex = hopsflow.interaction_energy_ensemble(result.ψ, result.ψ_1, hf_system, result.N)
with ut.hiro_style():
plt.errorbar(result.τ, e_int_ex, yerr=σ_e_int_ex, ecolor="yellow")
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
:RESULTS:
2022-01-17 17:40:33 +01:00
: 100% 999/999 [00:02<00:00, 406.62it/s]
[[file:./.ob-jupyter/d14fe1b04f0527eec44c69990195936cdcbbd965.svg]]
2021-11-11 16:10:25 +01:00
:END:
And both together:
#+begin_src jupyter-python
2022-01-17 17:40:33 +01:00
with ut.hiro_style():
plt.errorbar(result.τ, e_int_ex, yerr=σ_e_int_ex, ecolor="yellow")
plt.plot(result.τ, e_int)
2021-11-11 16:10:25 +01:00
#+end_src
#+RESULTS:
2022-01-17 17:40:33 +01:00
[[file:./.ob-jupyter/7cebf22e2e864368752a1919b342b685fcdd1303.svg]]