master-thesis/python/graveyard/billohops/hops.py

95 lines
3 KiB
Python
Raw Normal View History

2021-10-11 10:27:11 +02:00
"""A pedadogical exercise implementation of HOPS."""
import numpy as np
import numpy.typing as npt
import typing as t
import pdb
import scipy
import scipy.misc
2021-10-11 10:27:11 +02:00
2021-10-11 12:18:38 +02:00
class Hops:
def __init__(self, η, H_s, L, W, k_max, seed=None, solver_args=dict()):
"""Implements the integration of hops with
exactly one exponential term.
:param η: random process from `stocproc`
:param H_s: the system hamiltonian
:param L: the interaction operator
:param W: the exponent of the BCF
:param k_max: the depth of the hirarchy
:returns: the step function for the integration of hops
"""
self.η = η
self.H_s = H_s
self.L = L
self.W = W
self.k_max = k_max
self.dim = self.H_s.shape[0]
self.step = self._make_hops_step()
self.seed = seed
self._solver_args = solver_args
def _make_hops_step(self):
H_si = -1j * self.H_s
B = -np.conj(self.L).T
K = np.diag(np.arange(0, self.k_max + 1))
def step(t, ψ):
ψ = ψ.reshape((self.dim, self.k_max + 1), order="F")
# 1. Apply system H and tho constant contributions
ψ_1 = H_si @ ψ + self.W * (ψ @ K) + self.L @ (ψ * self.η(t))
# 2. Now the shifted orders, we set the truncator to zero
zeros = np.zeros((1, self.dim)).T
ψ_ext = np.hstack((zeros, ψ, zeros))
ψ_2 = B @ ψ_ext[:, 0:-2]
ψ_3 = self.L @ (ψ_ext[:, 2:] @ K)
res = np.array((ψ_1 + ψ_2 + ψ_3)).reshape(
((self.k_max + 1) * self.dim,), order="F"
2021-10-11 10:27:11 +02:00
)
2021-10-11 12:18:38 +02:00
return res
return step
def integrate_hops_trajectory(self, ψ_0, τ_max, seed=None):
seed = self.seed if seed is None else seed
ψ_0_ext = np.concatenate((ψ_0, np.zeros(self.k_max * self.dim))) + 0j
self.η.new_process(seed=seed)
return scipy.integrate.solve_ivp(
self.step,
(0, τ_max),
ψ_0_ext,
vectorized=False,
dense_output=True,
**self._solver_args
2021-10-11 10:27:11 +02:00
)
2021-10-11 12:18:38 +02:00
def integrate_hops_ensemble(self, ψ_0, τ, N):
τ_max = np.max(τ)
ρ = np.zeros((len(τ), self.dim, self.dim), dtype="complex128")
j = np.zeros(len(τ))
2021-10-11 12:18:38 +02:00
for i in range(0, N):
traj = self.integrate_hops_trajectory(
ψ_0, τ_max, seed=(None if self.seed is None else self.seed + i)
).sol(τ)
2021-10-11 12:18:38 +02:00
ψ = traj[0:2, :].T
2021-10-11 12:18:38 +02:00
ρ += ψ[:, :, np.newaxis] * ψ.conj()[:, np.newaxis, :]
j_c = self.energy_tranfser_for_trajectory(np.copy(traj), τ)
j += j_c
return τ, ρ / N, j
def energy_tranfser_for_trajectory(self, ψ, τ):
"""Calculate the energy transfer for one trajectory ``ψ`` which
includes at least the first HOPS hirarchy."""
ψ_0 = np.array(self.L @ ψ[0:2, :])
ψ_1 = ψ[2:4, :]
2021-10-11 10:27:11 +02:00
return 2 * np.real(-1j * self.W * np.sum(ψ_0.conj().T * ψ_1.T, axis=1))