master-thesis/python/billohops/hops.py

96 lines
2.4 KiB
Python
Raw Normal View History

2021-10-11 10:27:11 +02:00
"""A pedadogical exercise implementation of HOPS."""
import numpy as np
import numpy.typing as npt
import typing as t
import pdb
import scipy
def make_hops_step(
η, H_s: np.ndarray, L: np.ndarray, W: complex, k_max: int
) -> t.Callable[float, np.ndarray]:
"""Creates the step function for the integration of hops with
exactly one exponential term.
:param η: random process from `stocproc`
:param H_s: the system hamiltonian
:param L: the interaction operator
:param W: the exponent of the BCF
:param k_max: the depth of the hirarchy
:returns: the step function for the integration of hops
"""
dim = H_s.shape[0]
H_si = -1j * H_s
B = -np.conj(L).T
K = np.diag(np.arange(0, k_max + 1))
def step(t, ψ):
ψ = ψ.reshape((dim, k_max + 1), order="F")
# 1. Apply system H and tho constant contributions
ψ_1 = H_si @ ψ + W * (ψ @ K) + L @ (ψ * η(t))
# 2. Now the shifted orders, we set the truncator to zero
zeros = np.zeros((1, dim)).T
ψ_ext = np.hstack((zeros, ψ, zeros))
ψ_2 = B @ ψ_ext[:, 0:-2]
ψ_3 = L @ (ψ_ext[:, 2:] @ K)
res = np.array((ψ_1 + ψ_2 + ψ_3)).reshape(((k_max + 1) * dim,), order="F")
# print(res)
# __import__("pdb").set_trace()
return res
return step
def integrate_hops_trajectory(
η,
H_s: np.ndarray,
L: np.ndarray,
W: complex,
k_max: int,
ψ_0: np.ndarray,
τ_max: float,
seed: t.Optional[int] = None,
**kwargs
):
dim = H_s.shape[0]
ψ_0_ext = np.concatenate((ψ_0, np.zeros(k_max * dim))) + 0j
η.new_process(seed=seed)
step = make_hops_step(η, H_s, L, W, k_max)
return scipy.integrate.solve_ivp(
step, (0, τ_max), ψ_0_ext, vectorized=False, dense_output=True, **kwargs
)
def integrate_hops_ensemble(
η,
H_s: np.ndarray,
L: np.ndarray,
W: complex,
k_max: int,
ψ_0: np.ndarray,
τ_max: float,
N: int,
**kwargs
):
dim = H_s.shape[0]
τ = np.linspace(0, τ_max, 100)
ρ = np.zeros((100, dim, dim), dtype="complex128")
for _ in range(0, N):
ψ = (
integrate_hops_trajectory(
η, H_s, L, W, k_max, ψ_0, τ_max, seed=None, **kwargs
)
.sol(τ)[0:2, :]
.T
)
ρ += ψ[:, :, np.newaxis] * ψ.conj()[:, np.newaxis, :]
return τ, ρ / N