Bath Observables with HOPS Energy Flow in Strongly Coupled Open Quantum Systems

Valentin Boettcher

TU Dresden

January 1, 1980

Introduction

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Introduction Motivation Technical Basics

Bath and Interaction Energy A Little (more) Theory

Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Introduction Motivation Technical B

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

(1)

¹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$
(1)

with $[H_S, H_B] = 0.$

 \blacktriangleright weak coupling $H_{\rm I} \approx 0$ thermodynamics of open systems are somewhat understood¹

¹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$
(1)

with $[H_S, H_B] = 0.$

▶ weak coupling H_I ≈ 0 thermodynamics of open systems are somewhat understood¹
 ▶ strong coupling: ⟨H_I⟩ ~ ⟨H_S⟩ ⇒ we can't neglect the interaction ⇒ thermodynamics?

¹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$
(1)

with $[H_S, H_B] = 0.$

- \blacktriangleright weak coupling $H_{\rm I} \approx 0$ thermodynamics of open systems are somewhat understood¹
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- \blacktriangleright but what is clear: need to get access to exact dynamics of $H_{\rm I}, H_{\rm B}$

¹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Is that possible?

Is that possible? Yes.

Sneak Peek

We will be able to calculate $rac{\mathrm{d}\langle H_\mathrm{B}
angle}{\mathrm{d}t}$ (and $\langle H_\mathrm{I}
angle$).

▶ more general: $O_{\rm S} \otimes (B^a)^{\dagger} B^b$ with $B = \sum_{\lambda} g_{\lambda} a_{\lambda}$

Sneak Peek

We will be able to calculate $rac{\mathrm{d}\langle H_{\mathrm{B}}
angle}{\mathrm{d}t}$ (and $\langle H_{\mathrm{I}}
angle$).

▶ more general: $O_{\rm S} \otimes (B^a)^{\dagger} B^b$ with $B = \sum_{\lambda} g_{\lambda} a_{\lambda}$

won't call this heat-flow because it isn't the thermodynamic heat flow

Sneak Peek

We will be able to calculate $rac{\mathrm{d}\langle H_{\mathrm{B}}
angle}{\mathrm{d}t}$ (and $\langle H_{\mathrm{I}}
angle$).

▶ more general: $O_{\rm S} \otimes (B^a)^{\dagger} B^b$ with $B = \sum_{\lambda} g_{\lambda} a_{\lambda}$

won't call this *heat-flow* because it isn't *the* thermodynamic heat flow
 nevertheless: may be interesting *qualitative* measure for energy flow

Introduction Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Standard Model of Open Systems

In the following we will models of the $\rm form^2$

$$H = H_{\rm S}(t) + \sum_{n=1}^{N} \left[H_{\rm B}^{(n)} + \left(L_n^{\dagger}(t) B_n + {\rm h.c.} \right) \right], \tag{2}$$

where

 $\begin{array}{l} \blacktriangleright \hspace{0.1cm} H_{\rm S} \text{ is the System Hamiltonian} \\ \blacktriangleright \hspace{0.1cm} H_B^{(n)} = \sum_{\lambda} \omega_{\lambda}^{(n)} a_{\lambda}^{(n),\dagger} a_{\lambda}^{(n)} \\ \\ \blacktriangleright \hspace{0.1cm} B_n = \sum_{\lambda} g_{\lambda}^{(n)} a_{\lambda}^{(n)}. \end{array}$

²Sometimes this is called the "Standard Model of Open Systems".

What remains of the Bath?

Bath Correlation Function

$$\alpha(t-s) = \langle B(t)B(s)\rangle \left(\stackrel{T=0}{=} \sum_{\lambda} |g_{\lambda}|^2 \, \mathrm{e}^{-i\omega_{\lambda}(t-s)} \right) = \frac{1}{\pi} \int J(\omega) \mathrm{e}^{-i\omega t} \, \mathrm{d}\omega$$

What remains of the Bath?

Bath Correlation Function

$$\alpha(t-s) = \langle B(t)B(s)\rangle \left(\overset{T=0}{=} \sum_{\lambda} |g_{\lambda}|^2 \, \mathrm{e}^{-i\omega_{\lambda}(t-s)} \right) = \frac{1}{\pi} \int J(\omega) \mathrm{e}^{-i\omega t} \, \mathrm{d}\omega$$

Spectral Density

$$J(\omega)=\pi\sum_{\lambda}|g_{\lambda}|^{2}\delta(\omega-\omega_{\lambda})$$

 \blacktriangleright in thermodynamic limit \rightarrow smooth function

▶ here usually: Ohmic SD $J(\omega) = \eta \omega e^{-\omega/\omega_c}$ (think phonons)

NMQSD (Zero Temperature)

Open system dynamics formulated as a *stochastic* differential equation:

$$\partial_t \psi_t(\mathbf{\eta}_t^*) = -iH(t)\psi_t(\mathbf{\eta}_t^*) + \mathbf{L} \cdot \mathbf{\eta}_t^* \psi_t(\mathbf{\eta}_t^*) - \sum_{n=1}^N L_n^{\dagger}(t) \int_0^t \mathrm{d}s \,\alpha_n(t-s) \frac{\delta \psi_t(\mathbf{\eta}_t^*)}{\delta \eta_n^*(s)}, \qquad (3)$$

with

$$\mathcal{M}(\eta_n(t)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)^*) = \delta_{nm}\alpha_n(t-s), \tag{4}$$

by projecting on coherent bath states.³

³For details see: Disi, Gisin, and W. T. Strunz, "Non-Markovian quantum state diffusion"

HOPS

Using
$$\alpha_{n}(\tau) = \sum_{\mu}^{M_{n}} G_{\mu}^{(n)} e^{-W_{\mu}^{(n)}\tau}$$
 we define

$$D_{\mu}^{(n)}(t) \equiv \int_{0}^{t} ds \, G_{\mu}^{(n)} e^{-W_{\mu}^{(n)}(t-s)} \frac{\delta}{\delta \eta_{n}^{*}(s)}$$
(5)
and $D^{\underline{k}} \equiv \prod_{n=1}^{N} \prod_{\mu=1}^{M_{n}} \sqrt{\frac{\underline{k}_{n,\mu}!}{(G_{\mu}^{(n)})^{\underline{k}_{n,\mu}}}} \frac{1}{i^{\underline{k}_{n,\mu}}} (D_{\mu}^{(n)})^{\underline{k}_{n,\mu}}, \ \psi^{\underline{k}} \equiv D^{\underline{k}}\psi \text{ we find}$
 $\dot{\psi}^{\underline{k}} = \left[-iH_{\mathrm{S}}(t) + \mathbf{L}(t) \cdot \mathbf{\eta}^{*} - \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} \underline{k}_{n,\mu} W_{\mu}^{(n)} \right] \psi^{\underline{k}}$
 $+ i \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} \sqrt{G_{\mu}^{(n)}} \left[\sqrt{\underline{k}_{n,\mu}} L_{n}(t) \psi^{\underline{k}-\underline{e}_{n,\mu}} + \sqrt{(\underline{k}_{n,\mu}+1)} L_{n}^{\dagger}(t) \psi^{\underline{k}+\underline{e}_{n,\mu}} \right].$ (6)

Introduction

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Introduction

Motivation Technical Basics

Bath and Interaction Energy A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
(7)

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
(7)

...some manipulations ...

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
(7)

...some manipulations ...

Result (NMQSD)

$$J(t) = -i \mathcal{M}_{\eta^*} \left< \psi(\eta,t) \right| L^\dagger \dot{D}_t \left| \psi(\eta^*,t) \right> + \mathrm{c.c.}$$

with $\dot{D}_t = \int_0^t \mathrm{d}s \, \dot{\alpha}(t-s) \frac{\delta}{\delta \eta_s^*}.$

(8)

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
(7)

...some manipulations ...

Result (NMQSD)

$$J(t) = -i \mathcal{M}_{\eta^*} \left< \psi(\eta, t) \right| L^\dagger \dot{D}_t \left| \psi(\eta^*, t) \right> + \mathrm{c.c.}$$

with
$$\dot{D}_t = \int_0^t \mathrm{d}s \, \dot{\alpha}(t-s) \frac{\delta}{\delta \eta_s^*}.$$

Result (HOPS)

$$J(t) = -\sum_{\mu} \sqrt{G_{\mu}} W_{\mu} \mathcal{M}_{\eta^*} \left\langle \psi^{(0)}(\eta, t) \right| L^{\dagger} \left| \psi^{\mathbf{e}_{\mu}}(\eta^*, t) \right\rangle + \text{c.c.}$$
(9)

(8)

Generalizations

Finite Temperature

$$J(t) = J_0(t) + \left[\langle L^{\dagger} \partial_t \xi(t) \rangle + \text{c.c.} \right]$$
⁽¹⁰⁾

with $\mathcal{M}(\xi(t)) = 0 = \mathcal{M}(\xi(t)\xi(s)), \ \mathcal{M}(\xi(t)\xi^*(s)) = \frac{1}{\pi}\int_0^\infty \mathrm{d}\omega\bar{n}(\beta\omega)J(\omega)e^{-\mathrm{i}\omega(t-s)}$ and $J(\omega) = \pi\sum_{\lambda}|g_{\lambda}|^2\delta(w-\omega_{\lambda}).^4$

- nonlinear NMQSD/HOPS
- multiple baths straight forward
- interaction energy: "removing the dot"...
- ▶ general "collective" bath observables $O_{\rm S} \otimes (B^a)^{\dagger} B^b$ with $B = \sum_{\lambda} g_{\lambda} a_{\lambda}$

 $^{{}^{4}\}partial_{t}\xi(t)$ exists if correlation function is smooth

Is this any good?

Introduction

Motivation Technical Basics

Bath and Interaction Energy A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Model

$$H = \frac{\Omega}{4} (p^2 + q^2) + \frac{1}{2} q \sum_{\lambda} \left(g_{\lambda}^* b_{\lambda} + g_{\lambda} b_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda} b_{\lambda}^{\dagger} b_{\lambda}, \tag{11}$$

Model

$$H = \frac{\Omega}{4} (p^2 + q^2) + \frac{1}{2} q \sum_{\lambda} \left(g_{\lambda}^* b_{\lambda} + g_{\lambda} b_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda} b_{\lambda}^{\dagger} b_{\lambda}, \tag{11}$$

...leading to ...

$$\dot{q} = \Omega p \tag{12}$$

$$\dot{p} = -\Omega q - \int_0^t \Im[\alpha_0(t-s)]q(s)\,\mathrm{d}s + W(t) \tag{13}$$

$$\dot{b}_{\lambda} = -ig_{\lambda}\frac{q}{2} - i\omega_{\lambda}b_{\lambda} \tag{14}$$

with the operator noise
$$W(t) = -\sum_{\lambda} \left(g_{\lambda}^* b_{\lambda}(0) \mathrm{e}^{-i\omega_{\lambda}t} + g_{\lambda} b_{\lambda}^{\dagger}(0) \mathrm{e}^{i\omega_{\lambda}t} \right)$$
, $\langle W(t)W(s) \rangle = \alpha(t-s)$ and $\alpha_0 \equiv \alpha \big|_{T=0}$.

Solution through a matrix G(t) with $G(0)=\mathbbm{1}$ and

$$\dot{G}(t) = AG(t) - \int_0^t K(t-s)G(s) \,\mathrm{d}s \,, \quad A = \begin{pmatrix} 0 & \Omega \\ -\Omega & 0 \end{pmatrix}, \quad K(t) = \begin{pmatrix} 0 & 0 \\ \Im[\alpha_0(t)] & 0 \end{pmatrix}. \tag{15}$$

Solution through a matrix G(t) with $G(0)=\mathbbm{1}$ and

$$\dot{G}(t) = AG(t) - \int_0^t K(t-s)G(s) \,\mathrm{d}s \,, \quad A = \begin{pmatrix} 0 & \Omega \\ -\Omega & 0 \end{pmatrix}, \quad K(t) = \begin{pmatrix} 0 & 0 \\ \Im[\alpha_0(t)] & 0 \end{pmatrix}. \tag{15}$$

Then

$$\begin{pmatrix} q(t) \\ p(t) \end{pmatrix} = G(t) \begin{pmatrix} q(0) \\ p(0) \end{pmatrix} + \int_0^t G(t-s) \begin{pmatrix} 0 \\ W(s) \end{pmatrix} \mathrm{d}s \,.$$
 (16)

• "exact" solution via laplace transform and BCF expansion + residue theorem

Result

Solution

$$G(t) = \sum_{l=1}^{N+1} \left[R_l \begin{pmatrix} \tilde{z}_l & \Omega\\ \frac{\tilde{z}_l^2}{\Omega} & \tilde{z}_l \end{pmatrix} e^{\tilde{z}_l \cdot t} + \text{c.c.} \right]$$
(17)

with $R_l = f_0(\tilde{z}_l)/p'(\tilde{z}_l), \ f_0, p$ polynomials, \tilde{z}_l roots of p.

Result

Solution

$$G(t) = \sum_{l=1}^{N+1} \left[R_l \begin{pmatrix} \tilde{z}_l & \Omega\\ \frac{\tilde{z}_l^2}{\Omega} & \tilde{z}_l \end{pmatrix} \mathbf{e}^{\tilde{z}_l \cdot t} + \mathbf{c.c.} \right]$$
(17)

with $R_l = f_0(\tilde{z}_l)/p'(\tilde{z}_l), \, f_0, p$ polynomials, \tilde{z}_l roots of p.

- note: G doesn't depend on temperature
- solution very sensitive to precision of the fits and roots

Bath Energy Derivative

$$\begin{split} \left\langle \dot{H}_B \right\rangle &= \sum_{\lambda} \omega_\lambda \left(\left\langle b_\lambda^{\dagger} \dot{b}_\lambda \right\rangle + \text{c.c.} \right) \\ &= -\frac{1}{2} \Im \bigg[\int_0^t \mathrm{d}s \left\langle q(t)q(s) \right\rangle \dot{\alpha}_0(t-s) \bigg] \\ &\quad + \frac{1}{2} G_{12}(t) [\alpha(t) - \alpha_0(t)] - \frac{\Omega}{2} \int_0^t \mathrm{d}s \, G_{11}(s) [\alpha(s) - \alpha_0(s)] \end{split}$$
(18)

becomes huge sum of exponentials (thanks mathematica)
One Bath, Finite Temperature

Parameters

 $\Omega=1$, Ohmic BCF $\frac{\eta}{\pi}(\omega_c/(1+i\omega_c\tau))^2$ with ($\alpha(0)=0.64,\,\omega_c=2$), $N=10^5$ samples, 15 Hilbert space dimensions, $\left|\psi(0)\right>_{\rm S}=\left|1\right>_{\rm S},\,T=1$

Two Baths, Finite Temperature (Gradient)

Parameters

 $\Omega=\Lambda=1,$ symmetric Ohmic BCFs with ($\alpha(0)=0.25,\,\omega_c=2$), $N=10^4$ samples, 9 Hilbert space dimensions, $\left|\psi(0)\right>_{\rm S}=\left|0,0\right>_{\rm S},\,T=0.6,\,\gamma=0.5$

Motivation Technical Basics

Bath and Interaction Energy A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath

Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger}a_{\lambda} + g_{\lambda}^{*}\sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda}a_{\lambda}^{\dagger}a_{\lambda}, \ |\psi_0\rangle_{\rm S} = |\uparrow\rangle \tag{19}$$

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger}a_{\lambda} + g_{\lambda}^{*}\sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda}a_{\lambda}^{\dagger}a_{\lambda}, \ |\psi_0\rangle_{\rm S} = |\uparrow\rangle \tag{19}$$

how do we check convergence:

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger}a_{\lambda} + g_{\lambda}^{*}\sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda}a_{\lambda}^{\dagger}a_{\lambda}, \ |\psi_0\rangle_{\rm S} = |\uparrow\rangle \tag{19}$$

how do we check convergence:

old: difference of results to some "good" configuration

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger}a_{\lambda} + g_{\lambda}^{*}\sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda}a_{\lambda}^{\dagger}a_{\lambda}, \ |\psi_0\rangle_{\rm S} = |\uparrow\rangle \tag{19}$$

how do we check convergence:

- old: difference of results to some "good" configuration
- new: consistency with energy conservation

Example: Dependence of Flow on Stochastic Process Sampling

α(0) = 1.6 and ω_c = 4 ⇒ stress HOPS through fast decaying BCF
 "perfect" results only with very high accuracy⁵ ς
 good qualitative results for less extreme configurations (common theme)

⁵smaller ς is better

Various Cutoff Frequencies

Non-Markovian Dynamics

interaction strengths chosen for approx. same interaction energy

Non-Markovian Dynamics

- ▶ interaction strengths chosen for approx. same interaction energy
- timing important for energy transfer "performance"

Beware :)

The following is WIP and has not been written up properly yet.

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Extracting Energy from One Bath

> same model as above eq. (19), but with $L(\tau) = \sin^2(\frac{\Delta}{2}\tau)\sigma_x$

▶ how much energy can be *unitarily* extracted? $\implies \Delta E_{\max} = \frac{1}{\beta} S(\rho_S \| \rho_S^{\beta})$

Extracting Energy from One Bath

> same model as above eq. (19), but with $L(\tau) = \sin^2(\frac{\Delta}{2}\tau)\sigma_x$

▶ how much energy can be *unitarily* extracted? $\implies \Delta E_{\text{max}} = \frac{1}{\beta} S(\rho_S || \rho_S^\beta)$

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Otto Cycle (proof of concept)

Model

Spin-Boson model with compression of $H_{\rm S}$ and modulation of L.

classical toy model of the quantum heat engine community⁶

 6 Geva and Kosloff, "A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid".

$$\blacktriangleright ~\bar{P} = 1.98 \cdot 10^{-3} \pm 2.3 \cdot 10^{-5}$$
 , $\eta \approx 20\%$, $T_c = 1$, $T_h = 20$

- no tuning of parameters, except for resonant coupling
- long bath memory $\omega_c = 1$, but weak coupling

Questions (for the future)

- better performance through "overlapping" phases?
- strong coupling any good?
- non-Markovianity + strong coupling any good?
- what is the optimal efficiency and power? (probably no advantage here)

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

Anti-Zeno Engine

Question

Is there a use for non-Markovianity in quantum heat engines?

Mukherjee, Kofman, and Kurizki, "Anti-Zeno quantum advantage in fast-driven heat machines" claims that one can exploit the time-energy uncertainty for quantum advantage⁷

Model

Qubit coupled to two baths of different temperatures (T_c, T_h)

$$H_{\rm S} = \frac{1}{2} [\omega_0 + \gamma \Delta \sin(\Delta t)] \sigma_z, \ L_{c,h} = \frac{1}{2} \sigma_x \tag{20}$$

⁷I'd be careful to call this quantum advantage.

 \blacktriangleright couple for n modulation periods slightly of resonance

▶ for smaller *n* the sin($(\omega - (\omega_0 \pm \Delta))\tau$)/ $((\omega - (\omega_0 \pm \Delta))\tau$) has a greater overlap \implies controls power output

a) $P = -0.058 \pm 0.014$ b) $P = -0.068 \pm 0.010$

Parameters

 $\Delta=11$, $\gamma=0.5$, $\alpha(0)=1.0$, $\omega_0=20$, $T_c=8$, $T_h=40$

- ▶ this is not properly converged yet → newer results: no advantage at these temperatures / coupling strengths
- \blacktriangleright new simulations with temperatures from paper $\left(eta_{h(c)}=0.0005(0.005)
 ight)$ are promising
 - ▶ interesting → no good steady state power in this case (insufficient samples?)

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

stabilized normalization in nonlinear HOPS

stochastic process sampling via Cholesky decomposition

norm based truncation scheme

promising at "friendly" coupling strengths

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Other Projects

…

verify/falsify weak coupling results in the literature (engines)

three-level systems: there is an experimental paper ;)

parameter scan of two qubit model

Lessons Learned

- careful convergence checks pay off
- surveying literature is important
- properly documenting observations is a great help and should be done as early as possible
- > applications should be carefully chosen to answer interesting questions
- numerics are helpful, but physical insights are important
- comparison with some experiments would have been nice

References I

- Bera, Mohit Lal, Sergi Juli-Farr, et al. "Quantum Heat Engines with Carnot Efficiency at Maximum Power". In: arXiv (June 2021). eprint: 2106.01193. URL: https://arxiv.org/abs/2106.01193v1.
- Bera, Mohit Lal, Maciej Lewenstein, and Manabendra Nath Bera. "Attaining Carnot efficiency with quantum and nanoscale heat engines - npj Quantum Information". In: npj Quantum Inf. 7.31 (Feb. 2021), pp. 1–7. ISSN: 2056-6387. DOI: 10.1038/s41534-021-00366-6.
- Disi, L., N. Gisin, and W. T. Strunz. "Non-Markovian quantum state diffusion". In: *Phys. Rev. A* 58.3 (Sept. 1998), pp. 1699–1712. ISSN: 2469-9934. DOI: 10.1103/PhysRevA.58.1699.
- Esposito, Massimiliano, Maicol A. Ochoa, and Michael Galperin. "Nature of heat in strongly coupled open quantum systems". In: *Phys. Rev. B* 92.23 (Dec. 2015), p. 235440. ISSN: 2469-9969. DOI: 10.1103/PhysRevB.92.235440.
- Gao, Xing et al. "Non-Markovian Stochastic Schr\"odinger Equation: Matrix Product State Approach to the Hierarchy of Pure States". In: *arXiv* (Sept. 2021). eprint: 2109.06393. URL: https://arxiv.org/abs/2109.06393v3.

References II

- Geva, Eitan and Ronnie Kosloff. "A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid". In: J. Chem. Phys. 96.4 (Feb. 1992), pp. 3054–3067. ISSN: 0021-9606. DOI: 10.1063/1.461951.
- Kato, Akihito and Yoshitaka Tanimura. "Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines". In: J. Chem. Phys. 145.22 (Dec. 2016), p. 224105. ISSN: 0021-9606. DOI: 10.1063/1.4971370.
- ."Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence". In: J. Chem. Phys. 143.6 (Aug. 2015), p. 064107. ISSN: 0021-9606. DOI: 10.1063/1.4928192.
- Klauder, JR and ECG Sudarshan. "Fundamentals of Quantum Optics Benjamin". In: *Inc., New York* (1968).
- Motz, T. et al. "Rectification of heat currents across nonlinear quantum chains: a versatile approach beyond weak thermal contact". In: *New J. Phys.* 20.11 (Nov. 2018), p. 113020. ISSN: 1367-2630. DOI: 10.1088/1367-2630/aaea90.
- Mukherjee, Victor, Abraham G. Kofman, and Gershon Kurizki. "Anti-Zeno quantum advantage in fast-driven heat machines". In: *Commun. Phys.* 3.8 (Jan. 2020), pp. 1–12. ISSN: 2399-3650. DOI: 10.1038/s42005-019-0272-z.

References III

- Rivas, ngel. "Strong Coupling Thermodynamics of Open Quantum Systems". In: arXiv (Oct. 2019). DOI: 10.1103/PhysRevLett.124.160601. eprint: 1910.01246.
- Senior, Jorden et al. "Heat rectification via a superconducting artificial atom -Communications Physics". In: Commun. Phys. 3.40 (Feb. 2020), pp. 1–5. ISSN: 2399-3650.
 DOI: 10.1038/s42005-020-0307-5.
- Strasberg, Philipp and Andreas Winter. "First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy". In: PRX Quantum 2.3 (Aug. 2021), p. 030202. ISSN: 2691-3399. DOI: 10.1103/PRXQuantum.2.030202.
- Strunz, Walter T. "Stochastic Schrödinger equation approach to the dynamics of non-Markovian open quantum systems". Fachbereich Physik der Universität Essen, 2001.
- Talkner, Peter and Peter Hnggi. "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical". In: *Rev. Mod. Phys.* 92.4 (Oct. 2020),
 - p. 041002. ISSN: 1539-0756. DOI: 10.1103/RevModPhys.92.041002.

."Open system trajectories specify fluctuating work but not heat". In: *Phys. Rev. E* 94.2 (Aug. 2016), p. 022143. ISSN: 2470-0053. DOI: 10.1103/PhysRevE.94.022143.

References IV

Wiedmann, M., J. T. Stockburger, and J. Ankerhold. "Non-Markovian dynamics of a quantum heat engine: out-of-equilibrium operation and thermal coupling control". In: New J. Phys. 22.3 (Mar. 2020), p. 033007. ISSN: 1367-2630. DOI: 10.1088/1367-2630/ab725a.
Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

(21)

5/8

with $\left[H_{S},H_{B}\right] =0.$

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Statistical mechanics and thermodynamics at strong coupling: Quantum and classical . ¹⁰M. L. Bera, Juli-Farr, et al., "Quantum Heat Engines with Carnot Efficiency at Maximum Power"; M. L. Bera, Lewenstein, and M. N. Bera, "Attaining Carnot efficiency with quantum and nanoscale heat engines - npj Quantum Information"; Esposito, Ochoa, and Galperin, "Nature of heat in strongly coupled open quantum systems"; Kato and Tanimura, "Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines", "Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and gubit coherence": Motz et al. "Bertification of heat currents across nonlinear

Consider an open quantum system

$$H = \underbrace{H_S}_{\text{"small"}} + \underbrace{H_I}_{?} + \underbrace{H_B}_{\text{"big", simple}}$$

(21)

5/8

with $\left[H_{S},H_{B}\right] =0.$

 \blacktriangleright weak coupling $H_{\rm I}\approx 0$ thermodynamics^8 of open systems are somewhat understood 9

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

¹⁰M. L. Bera, Juli-Farr, et al., "Quantum Heat Engines with Carnot Efficiency at Maximum Power"; M. L. Bera, Lewenstein, and M. N. Bera, "Attaining Carnot efficiency with quantum and nanoscale heat engines - npj Quantum Information"; Esposito, Ochoa, and Galperin, "Nature of heat in strongly coupled open quantum systems"; Kato and Tanimura, "Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines", "Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence": Motz et al. "Bertification of heat currents across poplinear

Consider an open quantum system

$$I = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

(21)

5/8

with $[H_S, H_B] = 0.$

weak coupling H_I ≈ 0 thermodynamics⁸ of open systems are somewhat understood⁹
 strong coupling: (H_I) ~ (H_S) ⇒ we can't neglect the interaction ⇒ thermodynamics?

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

¹⁰M. L. Bera, Juli-Farr, et al., "Quantum Heat Engines with Carnot Efficiency at Maximum Power"; M. L. Bera, Lewenstein, and M. N. Bera, "Attaining Carnot efficiency with quantum and nanoscale heat engines - npj Quantum Information"; Esposito, Ochoa, and Galperin, "Nature of heat in strongly coupled open quantum systems"; Kato and Tanimura, "Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines", "Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and gubit-gubit coherence": Motz et al. "Bertification of heat currents across nonlinear

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

(21)

5/8

with $[H_S, H_B] = 0.$

- \blacktriangleright weak coupling $H_{\rm I}\approx 0$ thermodynamics^8 of open systems are somewhat understood 9
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- \blacktriangleright we do quantum mechanics \implies can't separate bath and system

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

¹⁰M. L. Bera, Juli-Farr, et al., "Quantum Heat Engines with Carnot Efficiency at Maximum Power";

M. L. Bera, Lewenstein, and M. N. Bera, "Attaining Carnot efficiency with quantum and nanoscale heat engines - npj Quantum Information"; Esposito, Ochoa, and Galperin, "Nature of heat in strongly coupled open quantum systems"; Kato and Tanimura, "Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines", "Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and gubit-gubit coherence". Motz et al. "Bertification of heat currents across poplinear

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

(21)

5/8

with $[H_S, H_B] = 0.$

- \blacktriangleright weak coupling $H_{\rm I}\approx 0$ thermodynamics^8 of open systems are somewhat understood^9
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- \blacktriangleright we do quantum mechanics \implies can't separate bath and system, especially not dynamics!

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

¹⁰M. L. Bera, Juli-Farr, et al., "Quantum Heat Engines with Carnot Efficiency at Maximum Power";

M. L. Bera, Lewenstein, and M. N. Bera, "Attaining Carnot efficiency with quantum and nanoscale heat engines - npj Quantum Information"; Esposito, Ochoa, and Galperin, "Nature of heat in strongly coupled open quantum systems"; Kato and Tanimura, "Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines", "Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and gubit-gubit coherence". Motz et al. "Bertification of heat currents across poplinear

Consider an open quantum system

$$I = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

(21)

5/8

with $\left[H_{S},H_{B}\right] =0.$

- \blacktriangleright weak coupling $H_{\rm I}\approx 0$ thermodynamics 8 of open systems are somewhat understood 9
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- we do quantum mechanics ⇒ can't separate bath and system, especially not dynamics!
 no consensus about strong coupling thermodynamics:¹⁰
- ⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

¹⁰M. L. Bera, Juli-Farr, et al., "Quantum Heat Engines with Carnot Efficiency at Maximum Power";
 M. L. Bera, Lewenstein, and M. N. Bera, "Attaining Carnot efficiency with quantum and nanoscale heat engines
 - npj Quantum Information"; Esposito, Ochoa, and Galperin, "Nature of heat in strongly coupled open quantum

system-bath coherence and qubit coherence": Motz et al. "Restification of heat currents across poplinear

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

(21)

5/8

with $\left[H_{S},H_{B}\right] =0.$

- \blacktriangleright weak coupling $H_{\rm I}\approx 0$ thermodynamics^8 of open systems are somewhat understood^9
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?

• we do quantum mechanics \implies can't separate bath and system, especially not dynamics!

no consensus about strong coupling thermodynamics:¹⁰

but what is clear: need to get access to exact dynamics of $H_{\rm I}, H_{\rm B}$

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

¹⁰M. L. Bera, Juli-Farr, et al., "Quantum Heat Engines with Carnot Efficiency at Maximum Power"; M. L. Bera, Lewenstein, and M. N. Bera, "Attaining Carnot efficiency with quantum and nanoscale heat engines - npj Quantum Information"; Esposito, Ochoa, and Galperin, "Nature of heat in strongly coupled open quantum systems"; Kato and Tanimura, "Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines", "Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and gubit-gubit coherence": Motz et al. "Bertification of heat currents across nonlinear

Ohmic SD BCF

NMQSD (Zero Temperature)

Expanding in a Bargmann (unnormalized) coherent state basis Klauder and Sudarshan, "Fundamentals of Quantum Optics Benjamin" $\{|\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, ...\rangle = |\underline{\mathbf{z}}\rangle\}$

$$|\psi(t)\rangle = \int \prod_{n=1}^{N} \left(\frac{\mathrm{d}\mathbf{z}^{(n)}}{\pi^{N_n}} \mathrm{e}^{-|\mathbf{z}|^2} \right) |\psi(t, \underline{\mathbf{z}}^*)\rangle |\underline{\mathbf{z}}\rangle , \qquad (22)$$

we obtain

$$\partial_t \psi_t(\mathbf{\eta}_t^*) = -iH\psi_t(\mathbf{\eta}_t^*) + \mathbf{L} \cdot \mathbf{\eta}_t^* \psi_t(\mathbf{\eta}_t^*) - \sum_{n=1}^N L_n^\dagger \int_0^t \mathrm{d}s \,\alpha_n(t-s) \frac{\delta \psi_t(\mathbf{\eta}_t^*)}{\delta \eta_n^*(s)}, \tag{23}$$

with

$$\mathcal{M}(\eta_n^*(t)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)^*) = \delta_{nm}\alpha_n(t-s), \tag{24}$$

where $\alpha_n(t-s) = \sum_{\lambda} \left| g_{\lambda}^{(n)} \right|^2 e^{-i\omega_{\lambda}^{(n)}(t-s)} = \langle B(t)B(s) \rangle_{I,\rho(0)}$ Walter T. Strunz, "Stochastic Schrödinger equation approach to the dynamics of non-Markovian open quantum systems" (fourier transf. of spectral density $J(\omega) = \pi \sum_{\lambda} |g_{\lambda}|^2 \delta(\omega - \omega_{\lambda})$).

Fock-Space Embedding

As in Gao et al., "Non-Markovian Stochastic Schr $\$ "odinger Equation: Matrix Product State Approach to the Hierarchy of Pure States" we can define

$$|\Psi\rangle = \sum_{\underline{\mathbf{k}}} |\psi^{\underline{\mathbf{k}}}\rangle \otimes |\underline{\mathbf{k}}\rangle \tag{25}$$

where $|\underline{\mathbf{k}}\rangle = \bigotimes_{n=1}^{N} \bigotimes_{\mu=1}^{N_n} \left|\underline{\mathbf{k}}_{n,\mu}\right\rangle$ are bosonic Fock-states. Now eq. (6) becomes

$$\partial_{t} \left| \Psi \right\rangle = \left[-iH_{\rm S} + \mathbf{L} \cdot \mathbf{\eta}^{*} - \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} b_{n,\mu}^{\dagger} b_{n,\mu} W_{\mu}^{(n)} + i \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} \sqrt{G_{n,\mu}} \left(b_{n,\mu}^{\dagger} L_{n} + b_{n,\mu} L_{n}^{\dagger} \right) \right] \left| \Psi \right\rangle.$$
(26)

Fock-Space Embedding

As in Gao et al., "Non-Markovian Stochastic Schr $\$ "odinger Equation: Matrix Product State Approach to the Hierarchy of Pure States" we can define

$$|\Psi\rangle = \sum_{\underline{\mathbf{k}}} |\psi^{\underline{\mathbf{k}}}\rangle \otimes |\underline{\mathbf{k}}\rangle$$
(25)

where $|\underline{\mathbf{k}}\rangle = \bigotimes_{n=1}^{N} \bigotimes_{\mu=1}^{N_n} \left|\underline{\mathbf{k}}_{n,\mu}\right\rangle$ are bosonic Fock-states. Now eq. (6) becomes

$$\partial_t \left| \Psi \right\rangle = \left[-iH_{\rm S} + \mathbf{L} \cdot \mathbf{\eta}^* - \sum_{n=1}^N \sum_{\mu=1}^{M_n} b_{n,\mu}^{\dagger} b_{n,\mu} W_{\mu}^{(n)} + i \sum_{n=1}^N \sum_{\mu=1}^{M_n} \sqrt{G_{n,\mu}} \left(b_{n,\mu}^{\dagger} L_n + b_{n,\mu} L_n^{\dagger} \right) \right] \left| \Psi \right\rangle. \tag{26}$$

 \implies possible to derive an upper bound for the norm of $\ket{\psi^{f k}}$

Fock-Space Embedding

As in Gao et al., "Non-Markovian Stochastic Schr $\$ "odinger Equation: Matrix Product State Approach to the Hierarchy of Pure States" we can define

$$|\Psi\rangle = \sum_{\underline{\mathbf{k}}} |\psi^{\underline{\mathbf{k}}}\rangle \otimes |\underline{\mathbf{k}}\rangle$$
 (25)

where $|\underline{\mathbf{k}}\rangle = \bigotimes_{n=1}^{N} \bigotimes_{\mu=1}^{N_n} \left|\underline{\mathbf{k}}_{n,\mu}\right\rangle$ are bosonic Fock-states. Now eq. (6) becomes

$$\partial_t \left| \Psi \right\rangle = \left[-iH_{\rm S} + \mathbf{L} \cdot \mathbf{\eta}^* - \sum_{n=1}^N \sum_{\mu=1}^{M_n} b_{n,\mu}^{\dagger} b_{n,\mu} W_{\mu}^{(n)} + i \sum_{n=1}^N \sum_{\mu=1}^{M_n} \sqrt{G_{n,\mu}} \left(b_{n,\mu}^{\dagger} L_n + b_{n,\mu} L_n^{\dagger} \right) \right] \left| \Psi \right\rangle. \tag{26}$$

 \implies possible to derive an upper bound for the norm of $\left|\psi^{\underline{\mathbf{k}}}\right\rangle$ \implies new truncation scheme