Bath Observables with HOPS Energy Flow in Strongly Coupled Open Quantum Systems

Valentin Boettcher, Richard Hartmann, Konstantin Beyer, Walter Strunz

Institute for Theoretical Physics, Dresden, Germany

17.08.2022

Introduction

Motivation Technical Basics

Bath Observables with HOPS

Applications

Energy Shovel Otto Cycle

Introduction Motivation

Technical Basics

Bath Observables with HOPS

Applications

Energy Shovel Otto Cycle

Introduction Motivation Technical Basi

Bath Observables with HOPS

Applications

Energy Shove Otto Cycle

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

 \blacktriangleright weak coupling $H_{\rm I} \approx 0$ thermodynamics of open systems are somewhat understood¹

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

 \blacktriangleright weak coupling $H_{\rm I} \approx 0$ thermodynamics of open systems are somewhat understood¹

▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"\text{small}"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"\text{big", simple}}$$

with $[H_S, H_B] = 0.$

 \blacktriangleright weak coupling $H_{\rm I} \approx 0$ thermodynamics of open systems are somewhat understood¹

- strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- \blacktriangleright but what is clear: need to get access to exact dynamics of $H_{
 m I}, H_{
 m B}$

Is that possible?

Is that possible? Yes.

Sneak Peek

We will be able to calculate $\frac{d\langle H_B \rangle}{dt}$ (and $\langle H_I \rangle$).

and still more general observables (omitted)

Sneak Peek

We will be able to calculate $\frac{d\langle H_B \rangle}{dt}$ (and $\langle H_I \rangle$).

and still more general observables (omitted)

won't call this heat-flow because it isn't the thermodynamic heat flow

Sneak Peek

We will be able to calculate $rac{\mathrm{d}\langle H_\mathrm{B}
angle}{\mathrm{d}t}$ (and $\langle H_\mathrm{I}
angle$).

and still more general observables (omitted)

won't call this *heat-flow* because it isn't *the* thermodynamic heat flow
 nevertheless: may be interesting *qualitative* measure for energy flow

Introduction Motivation Technical Basics

Bath Observables with HOPS

Applications

Energy Shove Otto Cycle

Standard Model of Open Systems

In the following we will work with models of the form²

$$H = H_{\rm S}(t) + \sum_{n=1}^{N} \left[H_{\rm B}^{(n)} + \left(L_n^{\dagger}(t) B_n + {\rm h.c.} \right) \right], \tag{2}$$

where

 $\begin{array}{l} \blacktriangleright \hspace{0.1cm} H_{\rm S} \hspace{0.1cm} {\rm is the System Hamiltonian} \\ \rule{0.1cm}{0.1cm} H_B^{(n)} = \sum_\lambda \omega_\lambda^{(n)} a_\lambda^{(n),\dagger} a_\lambda^{(n)} \\ \rule{0.1cm}{0.1cm} B_n = \sum_\lambda g_\lambda^{(n)} a_\lambda^{(n)}. \end{array}$

²Sometimes this is called the "Standard Model of Open Systems".

What remains of the Bath?

Bath Correlation Function

$$\alpha(t-s) = \langle B(t)B(s)\rangle \left(\stackrel{T=0}{=} \sum_{\lambda} \left| g_{\lambda} \right|^2 \, \mathrm{e}^{-i\omega_{\lambda}(t-s)} \right) = \frac{1}{\pi} \int J(\omega) \, \mathrm{e}^{-i\omega t} \, \mathrm{d}\omega$$

What remains of the Bath?

Bath Correlation Function

$$\alpha(t-s) = \left\langle B(t)B(s) \right\rangle \left(\stackrel{T=0}{=} \sum_{\lambda} \left| g_{\lambda} \right|^2 \, \mathrm{e}^{-i\omega_{\lambda}(t-s)} \right) = \frac{1}{\pi} \int J(\omega) \, \mathrm{e}^{-i\omega t} \, \mathrm{d}\omega$$

Spectral Density

$$J(\omega)=\pi\sum_{\lambda}|g_{\lambda}|^{2}\delta(\omega-\omega_{\lambda})$$

 \blacktriangleright in thermodynamic limit \rightarrow smooth function

• here usually: Ohmic SD $J(\omega) = \eta \omega e^{-\omega/\omega_c}$ (think phonons)

NMQSD (Zero Temperature)

Open system dynamics formulated as a *stochastic* differential equation:

$$\partial_t \left| \psi_t(\mathbf{\eta}_t^*) \right\rangle = -iH(t) \left| \psi_t(\mathbf{\eta}_t^*) \right\rangle + \mathbf{L} \cdot \mathbf{\eta}_t^* \left| \psi_t(\mathbf{\eta}_t^*) \right\rangle - \sum_{n=1}^N L_n^{\dagger}(t) \int_0^t \mathrm{d}s \, \alpha_n(t-s) \frac{\delta \left| \psi_t(\mathbf{\eta}_t^*) \right\rangle}{\delta \eta_n^*(s)}, \quad (3)$$

with

$$\mathcal{M}(\eta_n(t)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)^*) = \delta_{nm}\alpha_n(t-s), \tag{4}$$

by projecting on coherent bath states. ^3 System state can be recovered by averaging over η

$$\rho_{\rm S}(t) = \operatorname{tr}_{\rm B}\left[|\psi(t)\rangle\!\langle\psi(t)|\right] = \mathcal{M}_{\mathbf{\eta}_t^*}[|\psi_t(\mathbf{\eta}_t)\rangle\!\langle\psi_t(\mathbf{\eta}_t^*)|].$$
(5)

³For details see: [3]

HOPS

$$\begin{aligned} \text{Using } \alpha_{n}(\tau) &= \sum_{\mu}^{M_{n}} G_{\mu}^{(n)} \, \mathrm{e}^{-W_{\mu}^{(n)}\tau} \text{ we define} \\ D_{\mu}^{(n)}(t) &\equiv \int_{0}^{t} \mathrm{d}s \, G_{\mu}^{(n)} \, \mathrm{e}^{-W_{\mu}^{(n)}(t-s)} \, \frac{\delta}{\delta \eta_{n}^{*}(s)} \end{aligned} \tag{6} \end{aligned}$$

$$\begin{aligned} \text{and } D^{\mathbf{k}} &= \prod_{n=1}^{N} \prod_{\mu=1}^{M_{n}} \sqrt{\frac{\mathbf{k}_{n,\mu}!}{(G_{\mu}^{(n)})^{\mathbf{k}_{n,\mu}}}} \frac{1}{i^{\mathbf{k}_{n,\mu}}} \left(D_{\mu}^{(n)} \right)^{\mathbf{k}_{n,\mu}}, \ \psi_{t}^{\mathbf{k}} &\equiv D^{\mathbf{k}} \psi_{t} \text{ we find} \end{aligned}$$

$$\begin{aligned} \dot{\psi}_{t}^{\mathbf{k}} &= \left[-iH_{\mathrm{S}}(t) + \mathbf{L}(t) \cdot \mathbf{\eta}_{t}^{*} - \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} \mathbf{k}_{n,\mu} W_{\mu}^{(n)} \right] \psi_{t}^{\mathbf{k}} \\ &+ i \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} \sqrt{G_{\mu}^{(n)}} \left[\sqrt{\mathbf{k}_{n,\mu}} L_{n}(t) \psi_{t}^{\mathbf{k}-\mathbf{e}_{n,\mu}} + \sqrt{\left(\mathbf{k}_{n,\mu}+1\right)} L_{n}^{\dagger}(t) \psi_{t}^{\mathbf{k}+\mathbf{e}_{n,\mu}} \right]. \end{aligned} \tag{7}$$

Introduction

Motivation Technical Basics

Bath Observables with HOPS

Applications

Energy Shovel Otto Cycle

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
(8)

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
(8)

...some manipulations ...

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
(8)

...some manipulations ...

Result (NMQSD)

$$J(t) = -i \mathcal{M}_{\eta^*} \left< \psi(\eta, t) \right| L^\dagger \dot{D}_t \left| \psi(\eta^*, t) \right> + \mathrm{c.c.}$$

with $\dot{D}_t = \int_0^t \mathrm{d}s \, \dot{\alpha}(t-s) \frac{\delta}{\delta \eta_s^*}.$

(9)

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
(8)

...some manipulations ...

Result (NMQSD)

$$J(t) = -i \mathcal{M}_{\eta^*} \left< \psi(\eta, t) \right| L^\dagger \dot{D}_t \left| \psi(\eta^*, t) \right> + \mathrm{c.c.}$$

with
$$\dot{D}_t = \int_0^t \mathrm{d}s \, \dot{\alpha}(t-s) \frac{\delta}{\delta \eta_s^*}.$$

Result (HOPS)

$$J(t) = -\sum_{\mu} \sqrt{G_{\mu}} W_{\mu} \mathcal{M}_{\eta^*} \left\langle \psi^{(0)}(\eta, t) \right| L^{\dagger} \left| \psi^{\mathbf{e}_{\mu}}(\eta^*, t) \right\rangle + \text{c.c.}$$
(10)

(9)

Generalizations

- finite temperatures
- nonlinear NMQSD/HOPS
- multiple baths straight forward
- interaction energy: "removing the dot"...
- ▶ general "collective" bath observables $O_{\rm S} \otimes (B^a)^{\dagger} B^b$ with $B = \sum_{\lambda} g_{\lambda} a_{\lambda}$

Introduction

Motivation Technical Basics

Bath Observables with HOPS

Applications

Energy Shovel Otto Cycle

Introduction

Motivation Technical Basics

Bath Observables with HOPS

Applications Energy Shovel Otto Cycle

Model

$$H = \frac{1}{2}\sigma_z + \frac{f(\tau)}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger}a_{\lambda} + g_{\lambda}^*\sigma_x a_{\lambda}^{\dagger}\right) + \sum_{\lambda}\omega_{\lambda}a_{\lambda}^{\dagger}a_{\lambda}, \ |\psi_0\rangle_{\rm S} = |\downarrow\rangle \tag{11}$$

 $\blacktriangleright \ f(\tau) = \sin^2(\tfrac{\Delta}{2}\tau)$

 \blacktriangleright initial state of total system: $\rho_0 = |{\downarrow}\rangle\!\langle{\downarrow}|\otimes \frac{{\rm e}^{-\beta H_{\rm B}}}{Z}$

Shifted SD for resonance

Extracting Energy from One Bath

▶ how much energy can be *unitarily* extracted? $\implies W_{\text{max}} = \frac{1}{\beta} S(\rho_S || \rho_S^\beta)$

Speed Limit

Introduction

Motivation Technical Basics

Bath Observables with HOPS

Applications

Energy Shove Otto Cycle

Quantum Otto Cycle

Model

Spin-Boson model with compression of $H_{\rm S}$ and modulation of L.

classical toy model of the quantum heat engine community⁴

⁴4.

Modulation and Spectral Densities

Full Energy Overview

Power Contributions

 $\blacktriangleright~\bar{P}=.0025,~\eta\approx 29\%$, $T_c=1,~T_h=20$

no tuning of parameters, except for resonant coupling

long bath memory $\omega_c = 1$, but weak-ish coupling
Continuously Coupled Version

Current Work

- better performance through "overlapping" and shifting strokes?
- stronger coupling any good?
- non-Markovianity + strong coupling any good?
- what is the optimal efficiency and power?

Introduction

Motivation Technical Basics

Bath Observables with HOPS

Applications

Energy Shove Otto Cycle

Outlook

On the "To Do" List

- verify/falsify weak coupling results in the literature (engines)
- three-level systems: there is an experimental paper ;)
- parameter scan of two qubit model
- filter modes

Lessons Learned

- careful convergence checks pay off
- surveying literature is important
- properly documenting observations is a great help and should be done as early as possible
- > applications should be carefully chosen to answer interesting questions
- numerics are helpful, but physical insights are important
- comparison with some experiments would have been nice

References I

- ¹ Á. Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems", arXiv, 10.1103/PhysRevLett.124.160601 (2019) (cit. on pp. 4–7, 54–60, 62).
- ² P. Talkner and P. Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical", Rev. Mod. Phys. **92**, 041002 (2020) (cit. on pp. 4–7, 54–60, 62).
- ³ L. Disi, N. Gisin, and W. T. Strunz, "Non-Markovian quantum state diffusion", Phys. Rev. A **58**, 1699–1712 (1998) (cit. on p. 18).
- ⁴ E. Geva and R. Kosloff, "A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid", J. Chem. Phys. **96**, 3054–3067 (1992) (cit. on p. 32).
- ⁵ T. Motz, M. Wiedmann, J. T. Stockburger, and J. Ankerhold, "Rectification of heat currents across nonlinear quantum chains: a versatile approach beyond weak thermal contact", New J. Phys. **20**, 113020 (2018) (cit. on p. 62).

References II

- ⁶ M. Wiedmann, J. T. Stockburger, and J. Ankerhold, "Non-Markovian dynamics of a quantum heat engine: out-of-equilibrium operation and thermal coupling control", New J. Phys. **22**, 033007 (2020) (cit. on p. 62).
- ⁷ J. Senior, A. Gubaydullin, B. Karimi, J. T. Peltonen, J. Ankerhold, and J. P. Pekola, "Heat rectification via a superconducting artificial atom - Communications Physics", Commun. Phys. **3**, 1–5 (2020) (cit. on p. 62).
- ⁸ A. Kato and Y. Tanimura, "Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence", J. Chem. Phys. **143**, 064107 (2015) (cit. on p. 62).
- ⁹ A. Kato and Y. Tanimura, "Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines", J. Chem. Phys. **145**, 224105 (2016) (cit. on p. 62).

¹⁰P. Strasberg and A. Winter, "First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy", PRX Quantum 2, 030202 (2021) (cit. on p. 62).

References III

- ¹¹P. Talkner and P. Hnggi, "Open system trajectories specify fluctuating work but not heat", Phys. Rev. E **94**, 022143 (2016) (cit. on p. 62).
- ¹²M. L. Bera, M. Lewenstein, and M. N. Bera, "Attaining Carnot efficiency with quantum and nanoscale heat engines - npj Quantum Information", npj Quantum Inf. 7, 1–7 (2021) (cit. on p. 62).
- ¹³M. L. Bera, S. Juli-Farr, M. Lewenstein, and M. N. Bera, "Quantum Heat Engines with Carnot Efficiency at Maximum Power", arXiv (2021) (cit. on p. 62).
- ¹⁴M. Esposito, M. A. Ochoa, and M. Galperin, "Nature of heat in strongly coupled open quantum systems", Phys. Rev. B **92**, 235440 (2015) (cit. on p. 62).
- ¹⁵J. Klauder and E. Sudarshan, "Fundamentals of quantum optics benjamin", Inc., New York (1968) (cit. on p. 64).
- ¹⁶W. T. Strunz, "Stochastic schrödinger equation approach to the dynamics of non-markovian open quantum systems", (Fachbereich Physik der Universität Essen, 2001) (cit. on p. 64).

¹⁷X. Gao, J. Ren, A. Eisfeld, and Z. Shuai, "Non-Markovian Stochastic Schr\"odinger Equation: Matrix Product State Approach to the Hierarchy of Pure States", arXiv (2021) (cit. on pp. 65–67).

Model

$$H = \frac{\Omega}{4} (p^2 + q^2) + \frac{1}{2} q \sum_{\lambda} \left(g_{\lambda}^* b_{\lambda} + g_{\lambda} b_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda} b_{\lambda}^{\dagger} b_{\lambda}, \tag{12}$$

Model

$$H = \frac{\Omega}{4} (p^2 + q^2) + \frac{1}{2} q \sum_{\lambda} \left(g_{\lambda}^* b_{\lambda} + g_{\lambda} b_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda} b_{\lambda}^{\dagger} b_{\lambda}, \tag{12}$$

...leading to ...

$$\dot{q} = \Omega p \tag{13}$$

$$\dot{p} = -\Omega q - \int_0^t \Im[\alpha_0(t-s)]q(s)\,\mathrm{d}s + W(t) \tag{14}$$

$$\dot{b}_{\lambda} = -ig_{\lambda}\frac{q}{2} - i\omega_{\lambda}b_{\lambda} \tag{15}$$

with the operator noise
$$W(t) = -\sum_{\lambda} \left(g_{\lambda}^* b_{\lambda}(0) e^{-i\omega_{\lambda}t} + g_{\lambda} b_{\lambda}^{\dagger}(0) e^{i\omega_{\lambda}t} \right)$$
, $\langle W(t)W(s) \rangle = \alpha(t-s)$ and $\alpha_0 \equiv \alpha \Big|_{T=0}$.

Solution through a matrix G(t) with $G(0)=\mathbbm{1}$ and

$$\dot{G}(t) = AG(t) - \int_0^t K(t-s)G(s) \,\mathrm{d}s \,, \quad A = \begin{pmatrix} 0 & \Omega \\ -\Omega & 0 \end{pmatrix}, \quad K(t) = \begin{pmatrix} 0 & 0 \\ \Im[\alpha_0(t)] & 0 \end{pmatrix}. \tag{16}$$

Solution through a matrix G(t) with $G(0)=\mathbbm{1}$ and

$$\dot{G}(t) = AG(t) - \int_0^t K(t-s)G(s)\,\mathrm{d}s\,, \quad A = \begin{pmatrix} 0 & \Omega \\ -\Omega & 0 \end{pmatrix}, \quad K(t) = \begin{pmatrix} 0 & 0 \\ \Im[\alpha_0(t)] & 0 \end{pmatrix}. \tag{16}$$

Then

$$\begin{pmatrix} q(t) \\ p(t) \end{pmatrix} = G(t) \begin{pmatrix} q(0) \\ p(0) \end{pmatrix} + \int_0^t G(t-s) \begin{pmatrix} 0 \\ W(s) \end{pmatrix} \mathrm{d}s \,.$$
 (17)

• "exact" solution via laplace transform and BCF expansion + residue theorem

Result

Solution

$$G(t) = \sum_{l=1}^{N+1} \left[R_l \begin{pmatrix} \tilde{z}_l & \Omega\\ \frac{\tilde{z}_l^2}{\Omega} & \tilde{z}_l \end{pmatrix} \mathbf{e}^{\tilde{z}_l \cdot t} + \mathbf{c.c.} \right]$$
(18)

with $R_l = f_0(\tilde{z}_l)/p'(\tilde{z}_l), \, f_0, p$ polynomials, \tilde{z}_l roots of p.

Result

Solution

$$G(t) = \sum_{l=1}^{N+1} \left[R_l \begin{pmatrix} \tilde{z}_l & \Omega\\ \frac{\tilde{z}_l^2}{\Omega} & \tilde{z}_l \end{pmatrix} \mathbf{e}^{\tilde{z}_l \cdot t} + \mathbf{c.c.} \right]$$
(18)

with $R_l = f_0(\tilde{z}_l)/p'(\tilde{z}_l), \ f_0, p$ polynomials, \tilde{z}_l roots of p.

- note: G doesn't depend on temperature
- solution very sensitive to precision of the fits and roots

Bath Energy Derivative

$$\begin{split} \langle \dot{H}_B \rangle &= \sum_{\lambda} \omega_\lambda \left(\left\langle b_\lambda^{\dagger} \dot{b}_\lambda \right\rangle + \text{c.c.} \right) \\ &= -\frac{1}{2} \Im \bigg[\int_0^t \mathrm{d}s \left\langle q(t)q(s) \right\rangle \dot{\alpha}_0(t-s) \bigg] \\ &\quad + \frac{1}{2} G_{12}(t) [\alpha(t) - \alpha_0(t)] - \frac{\Omega}{2} \int_0^t \mathrm{d}s \, G_{11}(s) [\alpha(s) - \alpha_0(s)] \end{split}$$
(19)

becomes huge sum of exponentials (thanks Mathematica)

One Bath, Finite Temperature

Parameters

 $\Omega=1$, Ohmic BCF $\frac{\eta}{\pi}(\omega_c/(1+i\omega_c\tau))^2$ with ($\alpha(0)=0.64,\,\omega_c=2$), $N=10^5$ samples, 15 Hilbert space dimensions, $\left|\psi(0)\right>_{\rm S}=\left|1\right>_{\rm S},\,T=1$

Two Baths, Finite Temperature (Gradient)

Parameters

 $\Omega=\Lambda=1,$ symmetric Ohmic BCFs with ($\alpha(0)=0.25,\,\omega_c=2$), $N=10^4$ samples, 9 Hilbert space dimensions, $\left|\psi(0)\right>_{\rm S}=\left|0,0\right>_{\rm S},\,T=0.6,\,\gamma=0.5$

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

⁵even in strong coupling equilibrium...

⁶1, 2.

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

 \blacktriangleright weak coupling $H_{\rm I} \approx 0$ thermodynamics⁵ of open systems are somewhat understood⁶

⁵even in strong coupling equilibrium...

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

▶ weak coupling H_I ≈ 0 thermodynamics⁵ of open systems are somewhat understood⁶
 ▶ strong coupling: ⟨H_I⟩ ~ ⟨H_S⟩ ⇒ we can't neglect the interaction ⇒ thermodynamics?

⁵even in strong coupling equilibrium...

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

- \blacktriangleright weak coupling $H_{\rm I} \approx 0$ thermodynamics⁵ of open systems are somewhat understood⁶
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- \blacktriangleright we do quantum mechanics \implies can't separate bath and system

⁵even in strong coupling equilibrium...

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

- ▶ weak coupling H_I ≈ 0 thermodynamics⁵ of open systems are somewhat understood⁶
 ▶ strong coupling: ⟨H_I⟩ ~ ⟨H_S⟩ ⇒ we can't neglect the interaction ⇒
 - thermodynamics?
- \blacktriangleright we do quantum mechanics \implies can't separate bath and system, especially not dynamics!

⁵even in strong coupling equilibrium...

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

- \blacktriangleright weak coupling $H_{\rm I} \approx 0$ thermodynamics⁵ of open systems are somewhat understood⁶
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- \blacktriangleright we do quantum mechanics \implies can't separate bath and system, especially not dynamics!
- no consensus about strong coupling thermodynamics:

⁵even in strong coupling equilibrium...

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"small"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"big", simple}$$

with $[H_S, H_B] = 0.$

- \blacktriangleright weak coupling $H_{\rm I} \approx 0$ thermodynamics⁵ of open systems are somewhat understood⁶
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- \blacktriangleright we do quantum mechanics \implies can't separate bath and system, especially not dynamics!
- no consensus about strong coupling thermodynamics:
- \blacktriangleright but what is clear: need to get access to exact dynamics of $H_{\rm I}, H_{\rm B}$

⁵even in strong coupling equilibrium...

Generalizations

Finite Temperature

$$J(t) = J_0(t) + \left[\langle L^{\dagger} \partial_t \xi(t) \rangle + \text{c.c.} \right]$$
(21)
with $\mathcal{M}(\xi(t)) = 0 = \mathcal{M}(\xi(t)\xi(s)), \ \mathcal{M}(\xi(t)\xi^*(s)) = \frac{1}{\pi} \int_0^\infty d\omega \bar{n}(\beta\omega) J(\omega) e^{-i\omega(t-s)}$ and
$$J(\omega) = \pi \sum_{\lambda} |g_{\lambda}|^2 \delta(w - \omega_{\lambda}).^7$$

- finite temperatures
- nonlinear NMQSD/HOPS
- multiple baths straight forward
- interaction energy: "removing the dot"...
- ▶ general "collective" bath observables $O_{\rm S} \otimes (B^a)^{\dagger} B^b$ with $B = \sum_{\lambda} g_{\lambda} a_{\lambda}$

 $^{^7\}partial_t \xi(t)$ exists if correlation function is smooth

More Papers on Thermo

[1, 2, 5–14]

Ohmic SD BCF

NMQSD (Zero Temperature)

Expanding in a Bargmann (unnormalized) coherent state basis [15] $\{|\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, ... \rangle = |\underline{\mathbf{z}}\rangle\}$

$$|\psi(t)\rangle = \int \prod_{n=1}^{N} \left(\frac{\mathrm{d}\mathbf{z}^{(n)}}{\pi^{N_n}} \,\mathrm{e}^{-|\mathbf{z}|^2} \right) |\psi(t, \underline{\mathbf{z}}^*)\rangle \,|\underline{\mathbf{z}}\rangle \,, \tag{22}$$

we obtain

$$\partial_t \psi_t(\mathbf{\eta}_t^*) = -iH\psi_t(\mathbf{\eta}_t^*) + \mathbf{L} \cdot \mathbf{\eta}_t^* \psi_t(\mathbf{\eta}_t^*) - \sum_{n=1}^N L_n^\dagger \int_0^t \mathrm{d}s \,\alpha_n(t-s) \frac{\delta \psi_t(\mathbf{\eta}_t^*)}{\delta \eta_n^*(s)}, \tag{23}$$

with

$$\mathcal{M}(\eta_n^*(t)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)^*) = \delta_{nm}\alpha_n(t-s), \tag{24}$$

where $\alpha_n(t-s) = \sum_{\lambda} \left| g_{\lambda}^{(n)} \right|^2 e^{-i\omega_{\lambda}^{(n)}(t-s)} = \left\langle B(t)B(s) \right\rangle_{I,\rho(0)}$ [16] (fourier transf. of spectral density $J(\omega) = \pi \sum_{\lambda} |g_{\lambda}|^2 \delta(\omega - \omega_{\lambda})$).

Fock-Space Embedding

As in Ref. [17] we can define

$$\Psi \rangle = \sum_{\underline{\mathbf{k}}} \left| \psi^{\underline{\mathbf{k}}} \right\rangle \otimes \left| \underline{\mathbf{k}} \right\rangle$$
(25)

where $|\underline{\mathbf{k}}\rangle = \bigotimes_{n=1}^{N} \bigotimes_{\mu=1}^{N_n} \left|\underline{\mathbf{k}}_{n,\mu}\right\rangle$ are bosonic Fock-states. Now eq. (7) becomes

$$\partial_{t}\left|\Psi\right\rangle = \left[-iH_{\rm S} + \mathbf{L}\cdot\mathbf{\eta}^{*} - \sum_{n=1}^{N}\sum_{\mu=1}^{M_{n}}b_{n,\mu}^{\dagger}b_{n,\mu}W_{\mu}^{(n)} + i\sum_{n=1}^{N}\sum_{\mu=1}^{M_{n}}\sqrt{G_{n,\mu}}\left(b_{n,\mu}^{\dagger}L_{n} + b_{n,\mu}L_{n}^{\dagger}\right)\right]\left|\Psi\right\rangle. \tag{26}$$

Fock-Space Embedding

As in Ref. [17] we can define

$$\Psi \rangle = \sum_{\underline{\mathbf{k}}} \left| \psi^{\underline{\mathbf{k}}} \right\rangle \otimes \left| \underline{\mathbf{k}} \right\rangle$$
(25)

where $|\underline{\mathbf{k}}\rangle = \bigotimes_{n=1}^{N} \bigotimes_{\mu=1}^{N_n} \left|\underline{\mathbf{k}}_{n,\mu}\right\rangle$ are bosonic Fock-states. Now eq. (7) becomes

$$\partial_{t}\left|\Psi\right\rangle = \left[-iH_{\mathsf{S}} + \mathbf{L}\cdot\mathbf{\eta}^{*} - \sum_{n=1}^{N}\sum_{\mu=1}^{M_{n}}b_{n,\mu}^{\dagger}b_{n,\mu}W_{\mu}^{(n)} + i\sum_{n=1}^{N}\sum_{\mu=1}^{M_{n}}\sqrt{G_{n,\mu}}\left(b_{n,\mu}^{\dagger}L_{n} + b_{n,\mu}L_{n}^{\dagger}\right)\right]\left|\Psi\right\rangle. \tag{26}$$

 \implies possible to derive an upper bound for the norm of $\ket{\psi^{f k}}$

Fock-Space Embedding

As in Ref. [17] we can define

$$\Psi \rangle = \sum_{\underline{\mathbf{k}}} \left| \psi^{\underline{\mathbf{k}}} \right\rangle \otimes \left| \underline{\mathbf{k}} \right\rangle$$
(25)

where $|\mathbf{\underline{k}}\rangle = \bigotimes_{n=1}^{N} \bigotimes_{\mu=1}^{N_n} \left| \mathbf{\underline{k}}_{n,\mu} \right\rangle$ are bosonic Fock-states. Now eq. (7) becomes

$$\partial_t \left| \Psi \right\rangle = \left[-iH_{\rm S} + \mathbf{L} \cdot \mathbf{\eta}^* - \sum_{n=1}^N \sum_{\mu=1}^{M_n} b_{n,\mu}^{\dagger} b_{n,\mu} W_{\mu}^{(n)} + i \sum_{n=1}^N \sum_{\mu=1}^{M_n} \sqrt{G_{n,\mu}} \left(b_{n,\mu}^{\dagger} L_n + b_{n,\mu} L_n^{\dagger} \right) \right] \left| \Psi \right\rangle. \tag{26}$$

 \implies possible to derive an upper bound for the norm of $\left|\psi^{\underline{k}}\right\rangle$ \implies new truncation scheme

Multiple Baths

- theory generalizes easily to N baths
- \blacktriangleright generalized our HOPS code to N baths
- solving a model with two coupled HOs is now possible

$$H = \sum_{i \in \{1,2\}} \left[H_O^{(i)} + q_i B^{(i)} + H_B^{(i)} \right] + \frac{\gamma}{4} (q_1 - q_2)^2, \tag{27}$$

where $H_O^{(i)} = \frac{\Omega_i}{4} (p_i^2 + q_i^2)$, $B^{(i)} = \sum_{\lambda} \left(g_{\lambda}^{(i),*} b_{\lambda}^{(i)} + g_{\lambda}^{(i)} b_{\lambda}^{(i),\dagger} \right)$ and $H_B^{(i)} = \sum_{\lambda} \omega_{\lambda} b_{\lambda}^{(i),\dagger} b_{\lambda}^{(i)}$.

One Bath

Other Projects

One Bath, Zero Temperature

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger}a_{\lambda} + g_{\lambda}^{*}\sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda}a_{\lambda}^{\dagger}a_{\lambda}, \ |\psi_0\rangle_{\rm S} = |\uparrow\rangle \tag{28}$$

how do we check convergence:

One Bath, Zero Temperature

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger}a_{\lambda} + g_{\lambda}^{*}\sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda}a_{\lambda}^{\dagger}a_{\lambda}, \ |\psi_0\rangle_{\rm S} = |\uparrow\rangle \tag{28}$$

how do we check convergence:
One Bath, Zero Temperature

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger}a_{\lambda} + g_{\lambda}^{*}\sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda}a_{\lambda}^{\dagger}a_{\lambda}, \ |\psi_0\rangle_{\rm S} = |\uparrow\rangle \tag{28}$$

how do we check convergence:

old: difference of results to some "good" configuration

One Bath, Zero Temperature

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger}a_{\lambda} + g_{\lambda}^{*}\sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda}a_{\lambda}^{\dagger}a_{\lambda}, \ |\psi_0\rangle_{\rm S} = |\uparrow\rangle \tag{28}$$

how do we check convergence:

- old: difference of results to some "good" configuration
- new: consistency with energy conservation

Example: Dependence of the Interaction Energy on Stochastic Process Sampling

α(0) = 1.6 and ω_c = 4 ⇒ stress HOPS through fast decaying BCF
"perfect" results only with very high accuracy⁸ ς

good qualitative results for less extreme configurations (common theme)

⁸smaller ς is better

Various Cutoff Frequencies

Non-Markovian Dynamics

interaction strengths chosen for approx. same interaction energy

Non-Markovian Dynamics

- ▶ interaction strengths chosen for approx. same interaction energy
- timing important for energy transfer "performance"

Beware :)

The following is WIP and has not been written up properly yet.

One Bath

Other Projects

stabilized normalization in nonlinear HOPS

stochastic process sampling via Cholesky decomposition

norm based truncation scheme

promising at "friendly" coupling strengths

