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Situation
Consider an open quantum system

𝐻 = 𝐻S⏟
”small”

+ 𝐻I⏟
?

+ 𝐻B⏟
”big”, simple

(1)

with [𝐻𝑆, 𝐻𝐵] = 0.

▶ weak coupling 𝐻I ≈ 0 thermodynamics of open systems are somewhat understood1

▶ strong coupling: ⟨𝐻I⟩ ∼ ⟨𝐻S⟩ ⟹ we can’t neglect the interaction ⟹
thermodynamics?

▶ but what is clear: need to get access to exact dynamics of 𝐻I, 𝐻B

11, 2.
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Is that possible?

Yes.
Using HOPS :)

Sneak Peek
We will be able to calculate d⟨𝐻B⟩

d𝑡 (and ⟨𝐻I⟩).
▶ and still more general observables (omitted)

▶ won’t call this heat-flow because it isn’t the thermodynamic heat flow
▶ nevertheless: may be interesting qualitative measure for energy flow
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Standard Model of Open Systems

In the following we will work with models of the form2

𝐻 = 𝐻S(𝑡) +
𝑁

∑
𝑛=1

[𝐻(𝑛)
B + (𝐿†

𝑛(𝑡)𝐵𝑛 + h.c.)], (2)

where
▶ 𝐻S is the System Hamiltonian
▶ 𝐻(𝑛)

𝐵 = ∑𝜆 𝜔(𝑛)
𝜆 𝑎(𝑛),†

𝜆 𝑎(𝑛)
𝜆

▶ 𝐵𝑛 = ∑𝜆 𝑔(𝑛)
𝜆 𝑎(𝑛)

𝜆 .

2Sometimes this is called the “Standard Model of Open Systems”.
8 / 29



What remains of the Bath?

Bath Correlation Function

𝛼(𝑡 − 𝑠) = ⟨𝐵(𝑡)𝐵(𝑠)⟩ (𝑇 =0= ∑
𝜆

|𝑔𝜆|2 e−𝑖𝜔𝜆(𝑡−𝑠)) = 1
𝜋

∫ 𝐽(𝜔) e−𝑖𝜔𝑡 d𝜔

Spectral Density

𝐽(𝜔) = 𝜋 ∑
𝜆

|𝑔𝜆|2𝛿(𝜔 − 𝜔𝜆)

▶ in thermodynamic limit → smooth function
▶ here usually: Ohmic SD 𝐽(𝜔) = 𝜂𝜔 e−𝜔/𝜔𝑐 (think phonons)
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NMQSD (Zero Temperature)

Open system dynamics formulated as a stochastic differential equation:

𝜕𝑡 |𝜓𝑡(η∗
𝑡)⟩ = −𝑖𝐻(𝑡) |𝜓𝑡(η∗

𝑡)⟩ + L ⋅ η∗
𝑡 |𝜓𝑡(η∗

𝑡)⟩ −
𝑁

∑
𝑛=1

𝐿†
𝑛(𝑡) ∫

𝑡

0
d𝑠 𝛼𝑛(𝑡 − 𝑠)𝛿 |𝜓𝑡(η∗

𝑡)⟩
𝛿𝜂∗

𝑛(𝑠)
, (3)

with

ℳ(𝜂𝑛(𝑡)) = 0, ℳ(𝜂𝑛(𝑡)𝜂𝑚(𝑠)) = 0, ℳ(𝜂𝑛(𝑡)𝜂𝑚(𝑠)∗) = 𝛿𝑛𝑚𝛼𝑛(𝑡 − 𝑠), (4)

by projecting on coherent bath states.3
System state can be recovered by averaging over 𝜂

𝜌S(𝑡) = trB [|𝜓(𝑡)⟩⟨𝜓(𝑡)|] = ℳη∗
𝑡
[|𝜓𝑡(η𝑡)⟩⟨𝜓𝑡(η∗

𝑡)|]. (5)

3For details see: [3]
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HOPS

Using 𝛼𝑛(𝜏) = ∑𝑀𝑛
𝜇 𝐺(𝑛)

𝜇 e−𝑊 (𝑛)
𝜇 𝜏 we define

𝐷(𝑛)
𝜇 (𝑡) ≡ ∫

𝑡

0
d𝑠 𝐺(𝑛)

𝜇 e−𝑊 (𝑛)
𝜇 (𝑡−𝑠) 𝛿

𝛿𝜂∗
𝑛(𝑠)

(6)

and 𝐷k ≡ ∏𝑁
𝑛=1 ∏𝑀𝑛

𝜇=1 √
k𝑛,𝜇!

(𝐺(𝑛)
𝜇 )

k𝑛,𝜇
1

𝑖k𝑛,𝜇
(𝐷(𝑛)

𝜇 )
k𝑛,𝜇 , 𝜓k

𝑡 ≡ 𝐷k𝜓𝑡 we find

̇𝜓k
𝑡 = [−𝑖𝐻S(𝑡) + L(𝑡) ⋅ η∗

𝑡 −
𝑁

∑
𝑛=1

𝑀𝑛

∑
𝜇=1

k𝑛,𝜇𝑊 (𝑛)
𝜇 ]𝜓k

𝑡

+ 𝑖
𝑁

∑
𝑛=1

𝑀𝑛

∑
𝜇=1

√𝐺(𝑛)
𝜇 [√k𝑛,𝜇𝐿𝑛(𝑡)𝜓

k−e𝑛,𝜇
𝑡 + √(k𝑛,𝜇 + 1)𝐿†

𝑛(𝑡)𝜓
k+e𝑛,𝜇
𝑡 ]. (7)
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Zero Temperature, One Bath, Linear NMQSD
We want to calculate

𝐽 = −d ⟨𝐻B⟩
d𝑡

= ⟨𝐿†𝜕𝑡𝐵(𝑡) + 𝐿𝜕𝑡𝐵†(𝑡)⟩
I
. (8)

…some manipulations …

Result (NMQSD)

𝐽(𝑡) = −𝑖ℳ𝜂∗ ⟨𝜓(𝜂, 𝑡)| 𝐿†�̇�𝑡 |𝜓(𝜂∗, 𝑡)⟩ + c.c. (9)

with �̇�𝑡 = ∫𝑡
0

d𝑠 ̇𝛼(𝑡 − 𝑠) 𝛿
𝛿𝜂∗

𝑠
.

Result (HOPS)

𝐽(𝑡) = − ∑
𝜇

√𝐺𝜇𝑊𝜇ℳ𝜂∗ ⟨𝜓(0)(𝜂, 𝑡)∣ 𝐿† |𝜓e𝜇(𝜂∗, 𝑡)⟩ + c.c. (10)
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Generalizations

▶ finite temperatures
▶ nonlinear NMQSD/HOPS
▶ multiple baths straight forward
▶ interaction energy: “removing the dot”…
▶ general “collective” bath observables 𝑂S ⊗ (𝐵𝑎)†𝐵𝑏 with 𝐵 = ∑𝜆 𝑔𝜆𝑎𝜆

14 / 29
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Model

|↑⟩

|↓⟩

𝐻S 𝐻B

𝐿(𝜏)

𝐽(𝜔)
𝜔

𝑇 > 0

𝐻 = 1
2

𝜎𝑧 + 𝑓(𝜏)
2

∑
𝜆

(𝑔𝜆𝜎†
𝑥𝑎𝜆 + 𝑔∗

𝜆𝜎𝑥𝑎†
𝜆) + ∑

𝜆
𝜔𝜆𝑎†

𝜆𝑎𝜆, |𝜓0⟩S = |↓⟩ (11)

▶ 𝑓(𝜏) = sin2( Δ
2 𝜏)

▶ initial state of total system: 𝜌0 = |↓⟩⟨↓| ⊗ e−𝛽𝐻B
𝑍

▶ Shifted SD for resonance

17 / 29



Extracting Energy from One Bath
▶ how much energy can be unitarily extracted? ⟹ 𝒲max = 1

𝛽 𝑆(𝜌S ∣∣ 𝜌𝛽
S )

0 10 20 30 40 50 60

τ

−0.4

−0.3

−0.2

−0.1

0.0

0.1
(〈H
〉 τ
−
〈H
〉 0)

/
W

m
ax

ωc = 0.50
ωc = 0.96
ωc = 1.19
ωc = 1.41
ωc = 1.64
ωc = 1.87
ωc = 2.10
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Speed Limit

0.1 0.2 0.3 0.4 0.5

〈HI〉max

2

4

6

8

10

∆

P̄

0.1 0.2 0.3 0.4 0.5

〈HI〉max

P̄/P̄max,α

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.0

0.2

0.4

0.6

0.8

1.0
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Quantum Otto Cycle

|↑⟩

|↓⟩

𝐻S

𝜏

𝜏𝜏

𝐿ℎ(𝜏)𝐿𝑐(𝜏)

𝐻ℎ
B

𝐽(𝜔)
𝜔

𝑇ℎ

𝐻𝑐
B

𝐽(𝜔)
𝜔

𝑇𝑐

Model
Spin-Boson model with compression of 𝐻S and modulation of 𝐿.

▶ classical toy model of the quantum heat engine community4

44.
21 / 29



Modulation and Spectral Densities

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

τ

0.0

0.2

0.4

0.6

0.8

1.0

f (τ)

hc(τ)

hh(τ)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ω

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
rb

it
ra

ry
U

ni
ts

Cold
Hot
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Full Energy Overview

0 25 50 75 100 125 150 175 200

τ

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0
En

er
gy

System
Bath C
Interaction C
Bath H
Interaction H
Total
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Power Contributions

0 25 50 75 100 125 150 175 200

τ

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Power

Interaction
System

▶ ̄𝑃 = .0025, 𝜂 ≈ 29%, 𝑇𝑐 = 1, 𝑇ℎ = 20
▶ no tuning of parameters, except for resonant coupling
▶ long bath memory 𝜔𝑐 = 1, but weak-ish coupling
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Continuously Coupled Version

0 20 40 60 80 100 120 140 160

τ

−6

−4

−2

0

2

4

En
er

gy
System
Bath C
Interaction C
Bath H
Interaction H
Total
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Current Work

▶ better performance through “overlapping” and shifting strokes?
▶ stronger coupling any good?
▶ non-Markovianity + strong coupling any good?
▶ what is the optimal efficiency and power?

26 / 29
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On the “To Do” List

▶ verify/falsify weak coupling results in the literature (engines)
▶ three-level systems: there is an experimental paper ;)
▶ parameter scan of two qubit model
▶ filter modes
▶ …

28 / 29



Lessons Learned

▶ careful convergence checks pay off
▶ surveying literature is important
▶ properly documenting observations is a great help and should be done as early as possible
▶ applications should be carefully chosen to answer interesting questions
▶ numerics are helpful, but physical insights are important
▶ comparison with some experiments would have been nice
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Model

𝐻 = Ω
4

(𝑝2 + 𝑞2) + 1
2

𝑞 ∑
𝜆

(𝑔∗
𝜆𝑏𝜆 + 𝑔𝜆𝑏†

𝜆) + ∑
𝜆

𝜔𝜆𝑏†
𝜆𝑏𝜆, (12)

…leading to …

̇𝑞 = Ω𝑝 (13)

̇𝑝 = −Ω𝑞 − ∫
𝑡

0
ℑ[𝛼0(𝑡 − 𝑠)]𝑞(𝑠) d𝑠 + 𝑊(𝑡) (14)

̇𝑏𝜆 = −𝑖𝑔𝜆
𝑞
2

− 𝑖𝜔𝜆𝑏𝜆 (15)

with the operator noise 𝑊(𝑡) = − ∑𝜆 (𝑔∗
𝜆𝑏𝜆(0) e−𝑖𝜔𝜆𝑡 +𝑔𝜆𝑏†

𝜆(0) e𝑖𝜔𝜆𝑡),
⟨𝑊(𝑡)𝑊(𝑠)⟩ = 𝛼(𝑡 − 𝑠) and 𝛼0 ≡ 𝛼∣

𝑇 =0
.
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Solution through a matrix 𝐺(𝑡) with 𝐺(0) = 𝟙 and

̇𝐺(𝑡) = 𝐴𝐺(𝑡) − ∫
𝑡

0
𝐾(𝑡 − 𝑠)𝐺(𝑠) d𝑠 , 𝐴 = ( 0 Ω

−Ω 0), 𝐾(𝑡) = ( 0 0
ℑ[𝛼0(𝑡)] 0). (16)

Then
(𝑞(𝑡)

𝑝(𝑡)) = 𝐺(𝑡)(𝑞(0)
𝑝(0)) + ∫

𝑡

0
𝐺(𝑡 − 𝑠)( 0

𝑊(𝑠)) d𝑠 . (17)

▶ “exact” solution via laplace transform and BCF expansion + residue theorem
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Result

Solution

𝐺(𝑡) =
𝑁+1

∑
𝑙=1

[𝑅𝑙(
̃𝑧𝑙 Ω
̃𝑧2
𝑙

Ω ̃𝑧𝑙
) e ̃𝑧𝑙⋅𝑡 +c.c.] (18)

with 𝑅𝑙 = 𝑓0( ̃𝑧𝑙)/𝑝′( ̃𝑧𝑙), 𝑓0, 𝑝 polynomials, ̃𝑧𝑙 roots of 𝑝.

▶ note: 𝐺 doesn’t depend on temperature
▶ solution very sensitive to precision of the fits and roots
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Bath Energy Derivative

⟨�̇�𝐵⟩ = ∑
𝜆

𝜔𝜆(⟨𝑏†
𝜆

̇𝑏𝜆⟩ + c.c.)

= −1
2

ℑ[∫
𝑡

0
d𝑠 ⟨𝑞(𝑡)𝑞(𝑠)⟩ ̇𝛼0(𝑡 − 𝑠)]

+ 1
2

𝐺12(𝑡)[𝛼(𝑡) − 𝛼0(𝑡)] − Ω
2

∫
𝑡

0
d𝑠 𝐺11(𝑠)[𝛼(𝑠) − 𝛼0(𝑠)]

(19)

▶ becomes huge sum of exponentials (thanks Mathematica)
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One Bath, Finite Temperature
Parameters
Ω = 1 , Ohmic BCF 𝜂

𝜋 (𝜔𝑐/(1 + 𝑖𝜔𝑐𝜏))2 with (𝛼(0) = 0.64, 𝜔𝑐 = 2), 𝑁 = 105 samples, 15
Hilbert space dimensions, |𝜓(0)⟩S = |1⟩S, 𝑇 = 1

0 5 10 15 20 25 30 35 40

τ

0.00

0.05

0.10

0.15

−J

α(0) = 0.32, ωc = 1, (74.4%)

α(0) = 0.32, ωc = 2, (70.8%)

α(0) = 0.16, ωc = 2, (71.6%)

α(0) = 0.64, ωc = 2, (64.2%)

0 2 4 6 8 10

τ

−J
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Two Baths, Finite Temperature (Gradient)
Parameters
Ω = Λ = 1, symmetric Ohmic BCFs with (𝛼(0) = 0.25, 𝜔𝑐 = 2), 𝑁 = 104 samples, 9 Hilbert
space dimensions, |𝜓(0)⟩S = |0, 0⟩S, 𝑇 = 0.6, 𝛾 = 0.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

τ

−0.02

0.00

0.02

0.04

0.06

−J

α(0) = 0.25, ωc = 2, N = 1.00e + 04, T = 0.6

Hot Bath — 19.7%
Cold Bath — 0.8%

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

τ

−0.02

0.00

0.02

0.04

0.06

−J

α(0) = 0.25, ωc = 2, N = 1.00e + 04, T = 0.6

Hot Bath — 70.2%
Cold Bath — 66.0%
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Situation (Longer)
Consider an open quantum system

𝐻 = 𝐻S⏟
”small”

+ 𝐻I⏟
?

+ 𝐻B⏟
”big”, simple

(20)

with [𝐻𝑆, 𝐻𝐵] = 0.

▶ weak coupling 𝐻I ≈ 0 thermodynamics5 of open systems are somewhat understood6

▶ strong coupling: ⟨𝐻I⟩ ∼ ⟨𝐻S⟩ ⟹ we can’t neglect the interaction ⟹
thermodynamics?

▶ we do quantum mechanics ⟹ can’t separate bath and system

, especially not dynamics!

▶ no consensus about strong coupling thermodynamics:
▶ but what is clear: need to get access to exact dynamics of 𝐻I, 𝐻B

5even in strong coupling equilibrium…
61, 2.
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Generalizations

Finite Temperature

𝐽(𝑡) = 𝐽0(𝑡) + [⟨𝐿†𝜕𝑡𝜉(𝑡)⟩ + c.c.] (21)

with ℳ(𝜉(𝑡)) = 0 = ℳ(𝜉(𝑡)𝜉(𝑠)), ℳ (𝜉(𝑡)𝜉∗(𝑠)) = 1
𝜋 ∫∞

0
d𝜔�̄�(𝛽𝜔)𝐽(𝜔)𝑒−i𝜔(𝑡−𝑠) and

𝐽(𝜔) = 𝜋 ∑𝜆 |𝑔𝜆|2𝛿(𝑤 − 𝜔𝜆).7

▶ finite temperatures
▶ nonlinear NMQSD/HOPS
▶ multiple baths straight forward
▶ interaction energy: “removing the dot”…
▶ general “collective” bath observables 𝑂S ⊗ (𝐵𝑎)†𝐵𝑏 with 𝐵 = ∑𝜆 𝑔𝜆𝑎𝜆

7𝜕𝑡𝜉(𝑡) exists if correlation function is smooth
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More Papers on Thermo

[1, 2, 5–14]
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Ohmic SD BCF

0 10 20 30 40 50
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NMQSD (Zero Temperature)

Expanding in a Bargmann (unnormalized) coherent state basis [15] {∣z(1), z(2), …⟩ = |z⟩}

|𝜓(𝑡)⟩ = ∫
𝑁

∏
𝑛=1

(dz(𝑛)

𝜋𝑁𝑛
e−|z|2) |𝜓(𝑡, z∗)⟩ |z⟩ , (22)

we obtain

𝜕𝑡𝜓𝑡(η∗
𝑡) = −𝑖𝐻𝜓𝑡(η∗

𝑡) + L ⋅ η∗
𝑡𝜓𝑡(η∗

𝑡) −
𝑁

∑
𝑛=1

𝐿†
𝑛 ∫

𝑡

0
d𝑠 𝛼𝑛(𝑡 − 𝑠)𝛿𝜓𝑡(η∗

𝑡)
𝛿𝜂∗

𝑛(𝑠)
, (23)

with

ℳ(𝜂∗
𝑛(𝑡)) = 0, ℳ(𝜂𝑛(𝑡)𝜂𝑚(𝑠)) = 0, ℳ(𝜂𝑛(𝑡)𝜂𝑚(𝑠)∗) = 𝛿𝑛𝑚𝛼𝑛(𝑡 − 𝑠), (24)

where 𝛼𝑛(𝑡 − 𝑠) = ∑𝜆 ∣𝑔(𝑛)
𝜆 ∣

2
e−𝑖𝜔(𝑛)

𝜆 (𝑡−𝑠) = ⟨𝐵(𝑡)𝐵(𝑠)⟩𝐼,𝜌(0) [16] (fourier transf. of spectral
density 𝐽(𝜔) = 𝜋 ∑𝜆 |𝑔𝜆|2𝛿(𝜔 − 𝜔𝜆)).
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Fock-Space Embedding

As in Ref. [17] we can define
|Ψ⟩ = ∑

k
∣𝜓k⟩ ⊗ |k⟩ (25)

where |k⟩ = ⨂𝑁
𝑛=1 ⨂𝑁𝑛

𝜇=1 ∣k𝑛,𝜇⟩ are bosonic Fock-states.
Now eq. (7) becomes

𝜕𝑡 |Ψ⟩ = [−𝑖𝐻S + L ⋅ η∗ −
𝑁

∑
𝑛=1

𝑀𝑛

∑
𝜇=1

𝑏†
𝑛,𝜇𝑏𝑛,𝜇𝑊 (𝑛)

𝜇 + 𝑖
𝑁

∑
𝑛=1

𝑀𝑛

∑
𝜇=1

√𝐺𝑛,𝜇(𝑏†
𝑛,𝜇𝐿𝑛 + 𝑏𝑛,𝜇𝐿†

𝑛)] |Ψ⟩ .

(26)

⟹ possible to derive an upper bound for the norm of ∣𝜓k⟩ ⟹ new truncation scheme
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Multiple Baths

▶ theory generalizes easily to 𝑁 baths
▶ generalized our HOPS code to 𝑁 baths
▶ solving a model with two coupled HOs is now possible

𝐻 = ∑
𝑖∈{1,2}

[𝐻(𝑖)
𝑂 + 𝑞𝑖𝐵(𝑖) + 𝐻(𝑖)

𝐵 ] + 𝛾
4

(𝑞1 − 𝑞2)2, (27)

where 𝐻(𝑖)
𝑂 = Ω𝑖

4 (𝑝2
𝑖 + 𝑞2

𝑖 ), 𝐵(𝑖) = ∑𝜆 (𝑔(𝑖),∗
𝜆 𝑏(𝑖)

𝜆 + 𝑔(𝑖)
𝜆 𝑏(𝑖),†

𝜆 ) and 𝐻(𝑖)
𝐵 = ∑𝜆 𝜔𝜆𝑏(𝑖),†

𝜆 𝑏(𝑖)
𝜆 .
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One Bath, Zero Temperature

Model: Spin-Boson

𝐻 = 1
2

𝜎𝑧 + 1
2

∑
𝜆

(𝑔𝜆𝜎†
𝑥𝑎𝜆 + 𝑔∗

𝜆𝜎𝑥𝑎†
𝜆) + ∑

𝜆
𝜔𝜆𝑎†

𝜆𝑎𝜆, |𝜓0⟩S = |↑⟩ (28)

▶ how do we check convergence:

▶ old: difference of results to some “good” configuration
▶ new: consistency with energy conservation
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Example: Dependence of the Interaction Energy on Stochastic Process
Sampling

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

τ

−0.20

−0.15

−0.10

−0.05

0.00

〈H
I〉

18.5 19.0 19.5 20.0

−0.146

−0.144

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

τ

−0.004

−0.002

0.000

0.002

0.004

〈(H
I〉
−
〈H

I〉 r
ef

)/
〈H

I〉 m
ax

ς = 10−6, (92%)

ς = 10−5, (58%)

ς = 10−4, (30%)

▶ 𝛼(0) = 1.6 and 𝜔𝑐 = 4 ⟹ stress HOPS through fast decaying BCF
▶ “perfect” results only with very high accuracy8 𝜍
▶ good qualitative results for less extreme configurations (common theme)

8smaller 𝜍 is better
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Various Cutoff Frequencies

τ

−0.4

−0.2

0.0

0.2

0.4

〈H
S
〉

ωc = 1.0, α(0) = 0.40

ωc = 2.0, α(0) = 0.80

ωc = 3.0, α(0) = 1.20

ωc = 4.0, α(0) = 1.60

τ

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

J

7 8

−0.05

−0.04

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

τ

−0.20

−0.15

−0.10

−0.05

0.00

〈H
I〉

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

τ

0.0

0.2

0.4

0.6

0.8

1.0

〈H
B
〉
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Non-Markovian Dynamics

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

τ

−2

−1

0

1

2

3

4 ωc = 1
ωc = 2
ωc = 3

〈HB〉
〈HI〉
〈HS〉

1.0 1.5 2.0 2.5 3.0

ωc

−0.2

0.0

0.2

0.4

0.6

∆〈H〉
|〈HS〉 − (−2)|
〈HB〉 − 4

0 2 4 6 8

ω

0

2

4

6

8

10

||HS|| = 4

▶ interaction strengths chosen for approx. same interaction energy

▶ timing important for energy transfer “performance”
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

τ

−2

−1

0

1

2

3

4

5

ωc = 1
ωc = 2
ωc = 3

〈HB〉
〈HI〉
〈HS〉

1.0 1.5 2.0 2.5 3.0

ωc

−0.2

0.0

0.2

0.4

0.6

0.8 ∆〈H〉
|〈HS〉 − (−2)|
〈HB〉 − 4

▶ interaction strengths chosen for approx. same interaction energy
▶ timing important for energy transfer “performance”
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Beware :)
The following is WIP and has not been written up properly yet.
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▶ stabilized normalization in nonlinear HOPS

0 10 20 30 40 50
0

1

||
||

1 1e 6

▶ stochastic process sampling via Cholesky decomposition

0 2 4 6 8 10
5

0
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▶ norm based truncation scheme
▶ promising at “friendly” coupling strengths

0 2 4 6 8 10

10 7

10 6

10 5

10 4

10 3

10 2

N
or

m
 D

iff
er

en
ce

 to
 N

=
24

31
0

N=286, bath_memory, tol=0.1
N=302, bath_memory, tol=0.08
N=334, bath_memory, tol=0.05
N=416, bath_memory, tol=0.03
N=783, bath_memory, tol=0.01
N=1224, bath_memory, tol=0.005
N=3239, bath_memory, tol=0.001
N=144, power, k_fac=[1.0, 1.0]
N=361, power, k_fac=[1.2, 1.2]
N=900, power, k_fac=[1.5, 1.5]
N=1849, power, k_fac=[1.8, 1.8]
N=4096, power, k_fac=[2.0, 2.0]
N=24310, simplex, tol=0.1
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