\documentclass[final]{beamer} \pdfvariable suppressoptionalinfo 512\relax % ==================== % Packages % ==================== \usepackage[T1]{fontenc} \usepackage{../hiromacros} \usepackage{lmodern} \usepackage[size=A0,orientation=portrait,scale=1.0]{beamerposter} \usetheme{gemini} \usecolortheme{mit} \usepackage{graphicx} \usepackage{booktabs} \usepackage{tikz} \usepackage{pgfplots} \pgfplotsset{compat=1.14} \usepackage{physics} \usepackage{cleveref} \usepackage[font=scriptsize]{caption} \usepackage[list=true, font=scriptsize, labelformat=brace]{subcaption} \graphicspath{{figs/}} % Bibliographic Stuff \usepackage[backend=biber, language=english, style=phys]{biblatex} \addbibresource{references.bib} \DeclareDocumentCommand\vectorbold{ s m }{\IfBooleanTF{#1}{\symbfit{#2}}{\symbf{#2}}} % Vector bold [star for % Greek and italic Roman] \makeatletter \newcommand\thefontsize[1]{{#1 The current font size is: \f@size pt\par}} \makeatother % ==================== % Lengths % ==================== % If you have N columns, choose \sepwidth and \colwidth such that % (N+1)*\sepwidth + N*\colwidth = \paperwidth \newlength{\sepwidth} \newlength{\colwidth} \setlength{\sepwidth}{0.066\paperwidth} \setlength{\colwidth}{0.4\paperwidth} \newcommand{\separatorcolumn}{\begin{column}{\sepwidth}\end{column}} % ==================== % Title % ==================== \title{Calculating Energy Flows in Strongly Coupled Open Quantum Systems with HOPS} \author{\underline{Valentin Boettcher}\inst{1}, Richard Hartmann\inst{1}, Konstantin Beyer\inst{1}, Walter Strunz\inst{1}} \institute[shortinst]{\inst{1} Institute for Theoretical Physics, Dresden, Germany} % ==================== % Footer (optional) % ==================== \footercontent{ \href{https://tu-dresden.de/mn/physik/itp/tqo/die-professur}{https://tu-dresden.de/mn/physik/itp/tqo/die-professur} \hfill Group for Theoretical Quantum Optics, TU-Dresden \hfill \href{mailto:valentin.boettcher@tu-dresden.de}{valentin.boettcher@tu-dresden.de}} % (can be left out to remove footer) % ==================== % Logo (optional) % ==================== % use this to include logos on the left and/or right side of the header: \logoleft{\includegraphics[height=3cm]{Logo_TU_Dresden.pdf}} % ==================== % Body % ==================== \begin{document} \begin{frame}[t] \begin{columns}[t] \separatorcolumn \begin{column}{\colwidth} \begin{block}{Premise} \begin{itemize} \item application of thermodynamic notions to strongly coupled and non-Markovian open quantum systems is non-trivial (\cite{Rivas2019Oct,Kato2016Dec,Strasberg2021Aug,Talkner2020Oct} and many more) \item dynamics of bath and interaction Hamiltonians plays an important role \(\rightarrow\) must not be neglected in the strong coupling regime \item the ``Hierarchy of Pure States'' (HOPS~\cite{Hartmann2017Dec,Diosi1998Mar}) gives the us ability to simulate open quantum systems \textbf{exactly} \item because HOPS simulates global dynamics \(\rightarrow\) \textbf{gives access to certain bath dynamics with no additional effort} \end{itemize} \end{block} \begin{block}{NMQSD/HOPS} \begin{itemize} \item consider the model of a general quantum system (\(H_\sys(t)\)) coupled to \(N\) baths \begin{equation} \label{eq:generalmodel} H(t) = H_\sys(t) + ∑_{n=1}^N \qty[L_n^†(t)B_n + \hc] + ∑_{n=1}^NH_B\nth , \end{equation} with \(B_n=∑_{λ} g_λ\nth a_λ\nth\) and \(H_B\nth=∑_λω_λ\nth \qty(b_λ\nth)^\dag b_λ\nth\) \item leads to \emph{stochastic} Non-Markovian Quantum State Diffusion (NMQSD) \begin{equation} \label{eq:nmqsd} ∂_tψ_t(\vb{η}^\ast_t) = -\iu H(t) ψ_t(\vb{η}^\ast_t) + \vb{L}\cdot \vb{η}^\ast_tψ_t(\vb{η}^\ast_t) - ∑_{n=1}^N L(t)_n^†∫_0^t\dd{s}α_n(t-s)\fdv{ψ_t(\vb{η}^\ast_t)}{η^\ast_n(s)} \end{equation} \item the reduced state of the system is recovered through \(ρ=\mathcal{M}(ψ_t(\vb{η}^\ast_t)ψ_t^\dag(\vb{η}^\ast_t))\) \item with \(α_n(τ)=∑_{\mu}^{M_n}G_μ\nth\eu^{-W_μ\nth τ}\) we find for the hierarchy state \(\ket{Ψ}\in \hilb\otimes\mathcal{F}\) \begin{equation} \label{eq:fockhops} \begin{aligned} ∂_t\ket{Ψ} &= \qty[ \begin{aligned} -\iu H_\sys + \vb{L}\cdot\vb{η}^\ast &- ∑_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ \\ &\qquad+ \iu ∑_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^†_{n,μ}L_n + b_{n,μ}L^†_n) \end{aligned} ] \ket{Ψ}. \end{aligned} \end{equation} \item truncating hierarchy depth \(\kmat\) in \cref{eq:fockhops} yields numeric method \item finite temperature \(\rightarrow\) substitute \(B(t)\rightarrow B(t)+ξ(t)\) \item \(\exists\) nonlinear method which improves convergence drastically \end{itemize} See~\cite{Hartmann2017Dec} for details. \end{block} \begin{alertblock}{Bath Observables} \begin{itemize} \item \cref{eq:nmqsd,eq:fockhops} \(\implies\) correspondence \(B^n(t) \leftrightarrow ψ^\kmat\) {\tiny(\(\abs{\kmat}=n\))} \item can calulate observables of type \(O_\sys\otimes (B^a)^\dag B^b\) + time derivatives \end{itemize} We consider the zero temperature case with one bath in the linear method. \begin{description} \item[Bath Energy Flow] \begin{equation} \label{eq:heatflowdef} \begin{aligned} J &= - \dv{\ev{H_\bath}}{t} = \ev{L(t)^†∂_t B(t) + L(t)∂_t B^†(t)}_\inter \\ &=-\i \mathcal{M}_{η^\ast}\bra{\psi(η, t)}L(t)^†\dot{D}_t\ket{\psi(η^\ast,t)} + \cc\\ &= - ∑_\mu\sqrt{G_\mu}W_\mu \mathcal{M}_{η^\ast}\bra{\psi^{(0)}(η,t)}L(t)^†\ket{\psi^{\vb{e}_\mu}(η^\ast,t)} + \cc \end{aligned} \end{equation} The expectation value of bath energy flow is connected to the first level hierarchy states. \item[Interaction Energy] A similar expression exists for the expectation value of the interaction energy. \begin{equation} \label{eq:intexp} \begin{aligned} \ev{H_\inter} &=-\i \mathcal{M}_{η^\ast}\bra{\psi(η, t)}L(t)^†D_t\ket{\psi(η^\ast,t)} + \cc \\ &= ∑_\mu\sqrt{G_\mu} \mathcal{M}_{η^\ast}\bra{\psi^{(0)}(η,t)}L(t)^†\ket{\psi^{\vb{e}_\mu}(η^\ast,t)} + \cc. \end{aligned} \end{equation} \end{description} This result allows us (in principle) to calculate the energy flow in \textbf{arbitrarily driven systems} for a \textbf{wide temperature range} and with (sub-)Ohmic BCF. \end{alertblock} \begin{block}{Comparison to an Analytic Solution} \begin{columns} \begin{column}{.5\colwidth} \begin{itemize} \item ``Quantum Brownian Motion'' like model \begin{equation} \label{eq:hamiltonian} \begin{aligned} H = ∑_{i\in\qty{1,2}} &\qty[H^{(i)}_O + q_iB^{(i)} + H_B^{(i)}]\\ &\quad+ \frac{γ}{4}(q_1-q_2)^2 \end{aligned} \end{equation} where \(H_O^{(i)}= \frac{Ω_i}{4}\qty(p_i^2+q_i^2)\) \item exact solution via exponential expansion of the BCF in the Heisenberg picture \(\rightarrow\) easy access to bath energy flow \item here \tval{analytic/omega}, \tval{analytic/gamma}, \(α(τ)=η (1+\iu ω_cτ)^{-(2)}\) with \tval{analytic/cutoff_freq}, \tval{analytic/bcf_zero} \end{itemize} \end{column} \begin{column}{.5\colwidth} \begin{figure}[H] \centering \plot{analytic/flow} \caption{\label{fig:brownian}The bath energy flows \cref{eq:heatflowdef} for the hot (lower line) and the cold (upper line) bath show that the analytical and numerical results are compatible.} \end{figure} \end{column} \end{columns} \end{block} \begin{block}{Possible Applications} \begin{itemize} \item \emph{Simulation of thermal quantum machines} \item convergence criteria for HOPS: energy conservation, calculating the same observable in multiple ways \item quantification of entanglement of system and bath \item testing results obtained from approximations \end{itemize} \end{block} \begin{block}{Resources} {\AtNextBibliography{\tiny} \printbibliography} \end{block} \end{column} \separatorcolumn \begin{column}{\colwidth} \begin{block}{Spin-Boson like Model and BCF Dependence} \begin{itemize} \item spin-boson like model coupled to a zero temperature bath \begin{equation} \label{eq:spinbos} H_\sys= \frac12 σ_z,\, L=\frac12 σ_x,\, α(τ)=η (1+\iu ω_cτ)^{-(2)} \end{equation} \item memory time \(\sim 1/ω_c\) has qualitative influence on the bath energy flow \end{itemize} \begin{figure}[H] \centering \begin{subfigure}[t]{.49\columnwidth} \plot{one_bath/omega_interaction} \caption{\label{fig:omega_ints}\tval{one_bath/omega_bcf_str}} \end{subfigure} \begin{subfigure}[t]{.49\columnwidth} \plot{one_bath/delta_interaction} \caption{\tval{one_bath/delta_bcf_wc}} \end{subfigure} \caption{The interaction energy expectation value for different cutoff frequencies and coupling strengths, where the dashed lines are obtained using energy conservation while the solid lines are the result of direct calculation. The percentages in the legend tell how many points are compatible within one standard deviation. The Statistical error estimate is smaller than the line width. \(N=5\cdot 10^5\) trajectories have been used.} \end{figure} \end{block} \begin{block}{Initial Slip} \begin{itemize} \item for \emph{very} short times \(\rightarrow\) \(H_\sys\approx 0\), origin of the \emph{``Initial Slip''} spike in \cref{fig:brownian}: \begin{equation} \label{eq:purede} \ev{\dot{H}_\bath } = -2 ∫_0^t\dd{s}\ev{L(t)L(s)} \Im[\dot{α}(t-s)]. \end{equation} \item determines ultra short-time shape of \emph{all} trajectories \end{itemize} \begin{figure}[H] \centering \begin{subfigure}[t]{.49\linewidth} \plot{one_bath/initial_slip} \caption{\label{fig:initslipconst}The bath energy flows for the same settings as in \cref{fig:omega_ints}, where the dashed lines correspond to \cref{eq:purede}.} \end{subfigure} \begin{subfigure}[t]{.49\linewidth} \plot{modcoup/initial_slip_modcoup} \caption{Same as \cref{fig:initslipconst}, but for modulated coupling (``Smoothstep'' functions with smoothness \(s\), see inset).} \end{subfigure} \end{figure} \end{block} \begin{block}{Modulating the Coupling} \begin{itemize} \item same model as above \cref{eq:spinbos}, but with \(L(τ) = \sin^2(\frac{Δ}{2} τ)σ_x\) \item Question: How much energy can be extracted from a system connected to a single bath? (Ergotropy) \begin{itemize} \item Answer: less than \(ΔE_{\mathrm{max}}=\frac{1}{β}\qrelent{ρ}{ρ_β}\) \end{itemize} \end{itemize} \begin{figure}[H] \centering \begin{subfigure}[t]{.49\linewidth} \plot{modcoup/omegas_total} \caption{\label{fig:omega_total}The total energy for \tval{modcoup/omega_delta} and \tval{modcoup/omega_alpha} but varying cutoff. Energy is normalized to the ergotropy. The dashed vertical lines illustrate the bath memory time (\(|α(τ)| = α(0)/300\)).} \end{subfigure} % \begin{subfigure}[t]{.49\linewidth} % \plot{modcoup/flow_interaction_overview} % \caption{Same situation as in \cref{fig:omega_total}. All % quantities are normalized to the \(ω_c=1\) % case.} % \end{subfigure} \begin{subfigure}[t]{.49\linewidth} \plot{modcoup/delta_dependence} \caption{Maximum one-shot power for \(10\) periods and different modulation frequencies \(Δ\) and coupling strengths.} \end{subfigure} \end{figure} \end{block} \begin{block}{Continuously Coupled Engine (Preliminary)} \begin{itemize} \item qubit coupled to two baths of different temperatures (\(T_c, T_h\)) \begin{equation} \label{eq:antizenomodel} H_\sys= \frac12 \qty[ω_0 + γ Δ\sin(Δ t)]σ_z,\, L_{c,h}=\frac12 σ_x \end{equation} {\tiny \tval{anti_zeno/delta}, \tval{anti_zeno/gamma}, \tval{anti_zeno/omega_alpha}, \tval{anti_zeno/omega_zero}, \tval{anti_zeno/tc}, \tval{anti_zeno/th}} \item system Hamiltonian modulated + baths periodically decoupled (cooldown) and ``reset'' \end{itemize} \begin{figure}[H] \centering \begin{subfigure}[t]{.49\linewidth} \plot{anti_zeno/sd_setup} \caption{The spectral densities of the baths, where the vertical lines show where \(ω=ω_0 \pm Δ\). The overlap of the filter for \(n\) modulation periods is crucial for the ``anti-zeno'' effect~\cite{Mukherjee2020Jan}.} \end{subfigure} % \begin{subfigure}[t]{.49\linewidth} % \plot{modcoup/flow_interaction_overview} % \caption{Same situation as in \cref{fig:omega_total}. All % quantities are normalized to the \(ω_c=1\) % case.} % \end{subfigure} \begin{subfigure}[t]{.49\linewidth} \plot{anti_zeno/modulation_setup} \caption{Setup of the system and coupling modulation for the case with ``cooldown''. The units are arbitrary. The initialization period and two cycles are shown.} \end{subfigure} \begin{subfigure}[t]{.49\linewidth} \plot{anti_zeno/anti_zeno_with_cool} \caption{\label{fig:cont_coup} The total energy change after the initialization period, where vertical lines show the points at which the times for the calculation of the power are taken. The mean power obtained is \tval{anti_zeno/power_with_cool}.}. \end{subfigure} \begin{subfigure}[t]{.49\linewidth} \plot{anti_zeno/anti_zeno_without_cool} \caption{Same as in \cref{fig:cont_coup} but without cooldown. The mean power obtained is \tval{anti_zeno/power_without_cool}. The difference is not significant yet.}. \end{subfigure} \end{figure} \end{block} \end{column} \separatorcolumn \end{columns} \end{frame} \end{document}