Bath Observables with HOPS

Energy Flow in Strongly Coupled Open Quantum Systems

Valentin Boettcher, Richard Hartmann, Konstantin Beyer, Walter Strunz

Institute for Theoretical Physics, Dresden, Germany

17.08.2022

Motivation
Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Motivation
Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle

Motivation

Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Consider an open quantum system

$$H = \underbrace{H_{S}}_{\text{"small"}} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{\text{"big", simple}}$$
 (1)

with $[H_S, H_B] = 0$.

¹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Consider an open quantum system

$$H = \underbrace{H_{S}}_{\text{"small"}} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{\text{"big", simple}}$$
 (1)

with $[H_S, H_B] = 0$.

 \blacktriangleright weak coupling $H_{\rm I} \approx 0$ thermodynamics of open systems are somewhat understood¹

 $^{^1}$ Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Consider an open quantum system

$$H = \underbrace{H_{S}}_{\text{"small"}} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{\text{"big", simple}}$$
 (1)

with $[H_S, H_B] = 0$.

- lacktriangle weak coupling $H_{
 m I}pprox 0$ thermodynamics of open systems are somewhat understood 1
- strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?

 $^{^1}$ Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Consider an open quantum system

$$H = \underbrace{H_{S}}_{\text{"small"}} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{\text{"big", simple}}$$
 (1)

with $[H_S, H_B] = 0$.

- lacktriangle weak coupling $H_{
 m I}pprox 0$ thermodynamics of open systems are somewhat understood 1
- strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- \blacktriangleright but what is clear: need to get access to exact dynamics of $H_{
 m I}, H_{
 m B}$

 $^{^1}$ Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Is that possible?

Is that possible? Yes.

Sneak Peek

We will be able to calculate $\frac{\mathrm{d} \langle H_\mathrm{B} \rangle}{\mathrm{d} t}$ (and $\langle H_\mathrm{I} \rangle$).

 \blacktriangleright more general: $O_{\rm S}\otimes (B^a)^\dagger B^b$ with $B=\sum_\lambda g_\lambda a_\lambda$

Sneak Peek

We will be able to calculate $\frac{\mathrm{d}\langle H_\mathrm{B} \rangle}{\mathrm{d}t}$ (and $\langle H_\mathrm{I}
angle$).

- \blacktriangleright more general: $O_{\rm S}\otimes (B^a)^\dagger B^b$ with $B=\sum_\lambda g_\lambda a_\lambda$
- won't call this *heat-flow* because it isn't *the* thermodynamic heat flow

Sneak Peek

We will be able to calculate $\frac{\mathrm{d}\langle H_\mathrm{B} \rangle}{\mathrm{d}t}$ (and $\langle H_\mathrm{I}
angle$).

- \blacktriangleright more general: $O_{\rm S}\otimes (B^a)^\dagger B^b$ with $B=\sum_\lambda g_\lambda a_\lambda$
- won't call this heat-flow because it isn't the thermodynamic heat flow
- nevertheless: may be interesting qualitative measure for energy flow

Motivation

Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engin

Standard Model of Open Systems

In the following we will work with models of the form²

$$H = H_{S}(t) + \sum_{n=1}^{N} \left[H_{B}^{(n)} + \left(L_{n}^{\dagger}(t)B_{n} + \text{h.c.} \right) \right], \tag{2}$$

where

- lackbox $H_{
 m S}$ is the System Hamiltonian
- $\blacktriangleright \ H_B^{(n)} = \sum_{\lambda} \omega_{\lambda}^{(n)} a_{\lambda}^{(n),\dagger} a_{\lambda}^{(n)}$
- $\blacktriangleright B_n = \sum_{\lambda} g_{\lambda}^{(n)} a_{\lambda}^{(n)}.$

²Sometimes this is called the "Standard Model of Open Systems".

What remains of the Bath?

Bath Correlation Function

$$\alpha(t-s) = \langle B(t)B(s)\rangle \left(\stackrel{T=0}{=} \sum_{\lambda} |g_{\lambda}|^2 \operatorname{e}^{-i\omega_{\lambda}(t-s)} \right) = \frac{1}{\pi} \int J(\omega) \operatorname{e}^{-i\omega t} \, \mathrm{d}\omega$$

What remains of the Bath?

Bath Correlation Function

$$\alpha(t-s) = \langle B(t)B(s)\rangle \left(\stackrel{T=0}{=} \sum_{\lambda} |g_{\lambda}|^2 \operatorname{e}^{-i\omega_{\lambda}(t-s)} \right) = \frac{1}{\pi} \int J(\omega) \operatorname{e}^{-i\omega t} \, \mathrm{d}\omega$$

Spectral Density

$$J(\omega) = \pi \sum_{\lambda} |g_{\lambda}|^2 \delta(\omega - \omega_{\lambda})$$

- lacksquare in thermodynamic limit o smooth function
- here usually: Ohmic SD $J(\omega)=\eta\omega \mathrm{e}^{-\omega/\omega_c}$ (think phonons)

NMQSD (Zero Temperature)

Open system dynamics formulated as a stochastic differential equation:

$$\partial_t \psi_t(\mathbf{\eta}_t^*) = -iH(t)\psi_t(\mathbf{\eta}_t^*) + \mathbf{L} \cdot \mathbf{\eta}_t^* \psi_t(\mathbf{\eta}_t^*) - \sum_{n=1}^N L_n^\dagger(t) \int_0^t \mathrm{d}s \, \alpha_n(t-s) \frac{\delta \psi_t(\mathbf{\eta}_t^*)}{\delta \eta_n^*(s)}, \tag{3}$$

with

$$\mathcal{M}(\eta_n(t)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)^*) = \delta_{nm}\alpha_n(t-s), \tag{4}$$

by projecting on coherent bath states.³

 $^{^3\}mbox{For details see: Disi, Gisin, and W. T. Strunz, "Non-Markovian quantum state diffusion"$

HOPS

Using $\alpha_n(\tau) = \sum_{\mu}^{M_n} G_{\mu}^{(n)} \mathrm{e}^{-W_{\mu}^{(n)} \tau}$ we define

$$D_{\mu}^{(n)}(t) \equiv \int_{0}^{t} ds \, G_{\mu}^{(n)} e^{-W_{\mu}^{(n)}(t-s)} \frac{\delta}{\delta \eta_{n}^{*}(s)}$$
 (5)

and $D^{\underline{\mathbf{k}}} \equiv \prod_{n=1}^{N} \prod_{\mu=1}^{M_n} \sqrt{\frac{\underline{\mathbf{k}}_{n,\mu}!}{\left(G_{\mu}^{(n)}\right)^{\underline{\mathbf{k}}_{n,\mu}}}} \frac{1}{i^{\underline{\mathbf{k}}_{n,\mu}}} \left(D_{\mu}^{(n)}\right)^{\underline{\mathbf{k}}_{n,\mu}}$, $\psi_t^{\underline{\mathbf{k}}} \equiv D^{\underline{\mathbf{k}}} \psi_t$ we find

$$\dot{\psi}_{t}^{\underline{\mathbf{k}}} = \left[-iH_{S}(t) + \mathbf{L}(t) \cdot \mathbf{\eta}_{t}^{*} - \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} \underline{\mathbf{k}}_{n,\mu} W_{\mu}^{(n)} \right] \psi_{t}^{\underline{\mathbf{k}}}
+ i \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} \sqrt{G_{\mu}^{(n)}} \left[\sqrt{\underline{\mathbf{k}}_{n,\mu}} L_{n}(t) \psi_{t}^{\underline{\mathbf{k}} - \underline{\mathbf{e}}_{n,\mu}} + \sqrt{\left(\underline{\mathbf{k}}_{n,\mu} + 1\right)} L_{n}^{\dagger}(t) \psi_{t}^{\underline{\mathbf{k}} + \underline{\mathbf{e}}_{n,\mu}} \right].$$
(6)

Motivation
Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath
Energy Shovel
Otto Cycle
Anti-Zeno Engin

Motivation
Technical Basics

Bath and Interaction Energy

A Little (more) Theory

Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engin

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
 (7)

We want to calculate

$$J = -\frac{\mathrm{d} \langle H_{\mathrm{B}} \rangle}{\mathrm{d}t} = \langle L^{\dagger} \partial_t B(t) + L \partial_t B^{\dagger}(t) \rangle_{\mathrm{I}}. \tag{7}$$

...some manipulations ...

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
 (7)

...some manipulations ...

Result (NMQSD)

$$J(t) = -i\mathcal{M}_{\eta^*} \langle \psi(\eta, t) | L^{\dagger} \dot{D}_t | \psi(\eta^*, t) \rangle + \text{c.c.}$$
 (8)

with
$$\dot{D}_t = \int_0^t \mathrm{d}s \, \dot{\alpha}(t-s) \frac{\delta}{\delta \eta_s^*}.$$

We want to calculate

$$J = -\frac{\mathrm{d}\langle H_{\mathrm{B}}\rangle}{\mathrm{d}t} = \langle L^{\dagger}\partial_{t}B(t) + L\partial_{t}B^{\dagger}(t)\rangle_{\mathrm{I}}.$$
 (7)

...some manipulations ...

Result (NMQSD)

$$J(t) = -i\mathcal{M}_{\eta^*} \langle \psi(\eta, t) | L^{\dagger} \dot{D}_t | \psi(\eta^*, t) \rangle + \text{c.c.}$$
 (8)

with $\dot{D}_t = \int_0^t \mathrm{d}s \, \dot{\alpha}(t-s) \frac{\delta}{\delta \eta_s^*}.$

Result (HOPS)

$$J(t) = -\sum_{\mu} \sqrt{G_{\mu}} W_{\mu} \mathcal{M}_{\eta^*} \left\langle \psi^{(0)}(\eta, t) \middle| L^{\dagger} \middle| \psi^{\mathbf{e}_{\mu}}(\eta^*, t) \right\rangle + \text{c.c.}$$

$$\tag{9}$$

Generalizations

Finite Temperature

$$J(t) = J_0(t) + \left[\left\langle L^{\dagger} \partial_t \xi(t) \right\rangle + \text{c.c.} \right]$$
 (10)

with
$$\mathcal{M}(\xi(t))=0=\mathcal{M}(\xi(t)\xi(s)),\ \mathcal{M}\left(\xi(t)\xi^*(s)\right)=\frac{1}{\pi}\int_0^\infty \mathrm{d}\omega \bar{n}(\beta\omega)J(\omega)e^{-\mathrm{i}\omega(t-s)}$$
 and $J(\omega)=\pi\sum_\lambda |g_\lambda|^2\delta(w-\omega_\lambda).^4$

- nonlinear NMQSD/HOPS
- multiple baths straight forward
- interaction energy: "removing the dot"...
- \blacktriangleright general "collective" bath observables $O_{\rm S}\otimes (B^a)^\dagger B^b$ with $B=\sum_\lambda g_\lambda a_\lambda$

 $^{{}^4\}partial_t \mathcal{E}(t)$ exists if correlation function is smooth

Is this any good?

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Model

$$H = \frac{\Omega}{4}(p^2 + q^2) + \frac{1}{2}q\sum_{\lambda}\left(g_{\lambda}^*b_{\lambda} + g_{\lambda}b_{\lambda}^{\dagger}\right) + \sum_{\lambda}\omega_{\lambda}b_{\lambda}^{\dagger}b_{\lambda},\tag{11}$$

Model

$$H = \frac{\Omega}{4} (p^2 + q^2) + \frac{1}{2} q \sum_{\lambda} \left(g_{\lambda}^* b_{\lambda} + g_{\lambda} b_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda} b_{\lambda}^{\dagger} b_{\lambda}, \tag{11}$$

...leading to ...

$$\dot{q} = \Omega p \tag{12}$$

$$\dot{p} = -\Omega q - \int_0^t \Im[\alpha_0(t-s)]q(s) \,\mathrm{d}s + W(t) \tag{13}$$

$$\dot{b}_{\lambda} = -ig_{\lambda}\frac{q}{2} - i\omega_{\lambda}b_{\lambda} \tag{14}$$

with the operator noise $W(t) = -\sum_{\lambda} \left(g_{\lambda}^* b_{\lambda}(0) \mathrm{e}^{-i\omega_{\lambda}t} + g_{\lambda} b_{\lambda}^{\dagger}(0) \mathrm{e}^{i\omega_{\lambda}t}\right)$, $\langle W(t)W(s) \rangle = \alpha(t-s)$ and $\alpha_0 \equiv \alpha \Big|_{T=0}$.

Solution through a matrix G(t) with $G(0) = \mathbb{1}$ and

$$\dot{G}(t) = AG(t) - \int_0^t K(t-s)G(s) \, \mathrm{d}s \,, \quad A = \begin{pmatrix} 0 & \Omega \\ -\Omega & 0 \end{pmatrix}, \quad K(t) = \begin{pmatrix} 0 & 0 \\ \Im[\alpha_0(t)] & 0 \end{pmatrix}. \tag{15}$$

Solution through a matrix G(t) with G(0) = 1 and

$$\dot{G}(t) = AG(t) - \int_0^t K(t-s)G(s) \, \mathrm{d}s \,, \quad A = \begin{pmatrix} 0 & \Omega \\ -\Omega & 0 \end{pmatrix}, \quad K(t) = \begin{pmatrix} 0 & 0 \\ \Im[\alpha_0(t)] & 0 \end{pmatrix}. \tag{15}$$

Then

$$\begin{pmatrix} q(t) \\ p(t) \end{pmatrix} = G(t) \begin{pmatrix} q(0) \\ p(0) \end{pmatrix} + \int_0^t G(t-s) \begin{pmatrix} 0 \\ W(s) \end{pmatrix} \mathrm{d}s \,. \tag{16}$$

"exact" solution via laplace transform and BCF expansion + residue theorem

Result

Solution

$$G(t) = \sum_{l=1}^{N+1} \left[R_l \begin{pmatrix} \tilde{z}_l & \Omega \\ \frac{\tilde{z}_l^2}{\Omega} & \tilde{z}_l \end{pmatrix} e^{\tilde{z}_l \cdot t} + \text{c.c.} \right]$$
 (17)

with $R_l = f_0(\tilde{z}_l)/p'(\tilde{z}_l)$, f_0, p polynomials, \tilde{z}_l roots of p.

Result

Solution

$$G(t) = \sum_{l=1}^{N+1} \left[R_l \begin{pmatrix} \tilde{z}_l & \Omega \\ \frac{\tilde{z}_l^2}{\Omega} & \tilde{z}_l \end{pmatrix} e^{\tilde{z}_l \cdot t} + \text{c.c.} \right]$$
 (17)

with $R_l=f_0(\tilde{z}_l)/p'(\tilde{z}_l)$, f_0,p polynomials, \tilde{z}_l roots of p.

- \triangleright note: G doesn't depend on temperature
- > solution very sensitive to precision of the fits and roots

Bath Energy Derivative

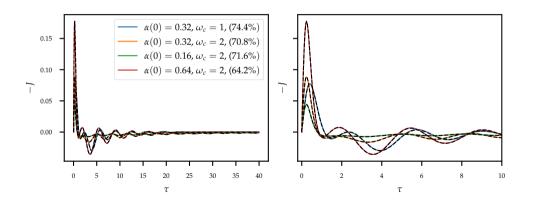
$$\begin{split} \left\langle \dot{H}_{B} \right\rangle &= \sum_{\lambda} \omega_{\lambda} \left(\left\langle b_{\lambda}^{\dagger} \dot{b}_{\lambda} \right\rangle + \mathrm{c.c.} \right) \\ &= -\frac{1}{2} \Im \bigg[\int_{0}^{t} \mathrm{d}s \left\langle q(t) q(s) \right\rangle \dot{\alpha}_{0}(t-s) \bigg] \\ &+ \frac{1}{2} G_{12}(t) [\alpha(t) - \alpha_{0}(t)] - \frac{\Omega}{2} \int_{0}^{t} \mathrm{d}s \, G_{11}(s) [\alpha(s) - \alpha_{0}(s)] \end{split} \tag{18}$$

becomes huge sum of exponentials (thanks Mathematica)

One Bath, Finite Temperature

Parameters

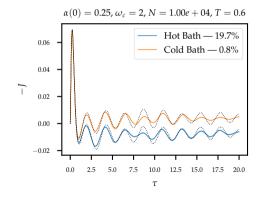
 $\Omega=1$, Ohmic BCF $\frac{\eta}{\pi}(\omega_c/(1+i\omega_c\tau))^2$ with ($\alpha(0)=0.64,\,\omega_c=2$), $N=10^5$ samples, 15 Hilbert space dimensions, $|\psi(0)\rangle_{\rm S}=|1\rangle_{\rm S},\,T=1$

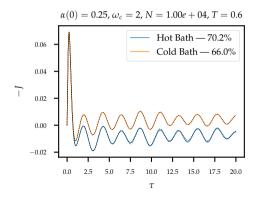


Two Baths, Finite Temperature (Gradient)

Parameters

 $\Omega=\Lambda=1$, symmetric Ohmic BCFs with ($\alpha(0)=0.25,\,\omega_c=2$), $N=10^4$ samples, 9 Hilbert space dimensions, $|\psi(0)\rangle_{\rm S}=|0,0\rangle_{\rm S},\,T=0.6,\,\gamma=0.5$





Introduction

Motivation
Technical Rasics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Outlook

Introduction

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath

Energy Shovel Otto Cycle Anti-Zeno Engi

Outlook

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger} a_{\lambda} + g_{\lambda}^* \sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda} a_{\lambda}^{\dagger} a_{\lambda}, \ |\psi_0\rangle_{S} = |\uparrow\rangle$$
 (19)

how do we check convergence:

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger} a_{\lambda} + g_{\lambda}^* \sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda} a_{\lambda}^{\dagger} a_{\lambda}, \ |\psi_0\rangle_{S} = |\uparrow\rangle$$
 (19)

how do we check convergence:

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger} a_{\lambda} + g_{\lambda}^* \sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda} a_{\lambda}^{\dagger} a_{\lambda}, \ |\psi_0\rangle_{S} = |\uparrow\rangle$$
 (19)

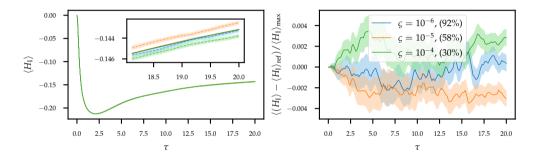
- how do we check convergence:
 - lacktriangleright of lacktrian

Model: Spin-Boson

$$H = \frac{1}{2}\sigma_z + \frac{1}{2}\sum_{\lambda} \left(g_{\lambda}\sigma_x^{\dagger} a_{\lambda} + g_{\lambda}^* \sigma_x a_{\lambda}^{\dagger} \right) + \sum_{\lambda} \omega_{\lambda} a_{\lambda}^{\dagger} a_{\lambda}, \ |\psi_0\rangle_{S} = |\uparrow\rangle$$
 (19)

- how do we check convergence:
 - lacktriance of results to some "good" configuration
 - ▶ new: consistency with energy conservation

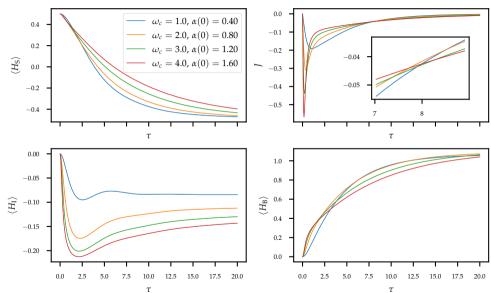
Example: Dependence of the Interaction Energy on Stochastic Process Sampling



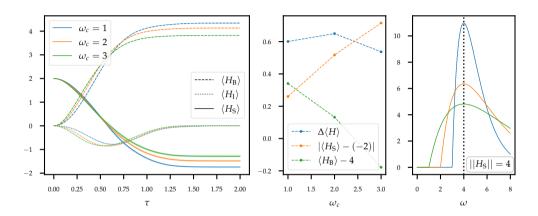
- ightharpoonup lpha(0)=1.6 and $\omega_c=4 \implies$ stress HOPS through fast decaying BCF
- ightharpoonup "perfect" results only with very high accuracy ho
- good qualitative results for less extreme configurations (common theme)

 $^{^{5}}$ smaller ς is better

Various Cutoff Frequencies

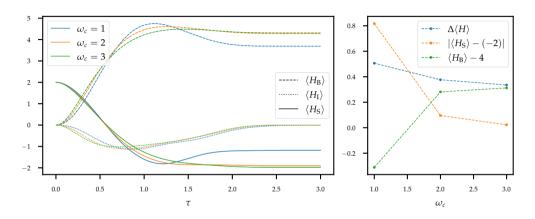


Non-Markovian Dynamics



interaction strengths chosen for approx. same interaction energy

Non-Markovian Dynamics



- interaction strengths chosen for approx. same interaction energy
- ▶ timing important for energy transfer "performance"

Beware:)

The following is WIP and has not been written up properly yet.

Introduction

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath

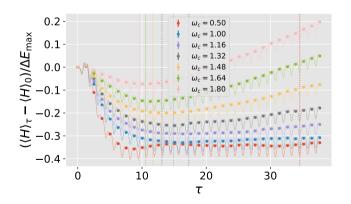
Energy Shovel

Otto Cycle Anti-Zeno Engi

Outlook

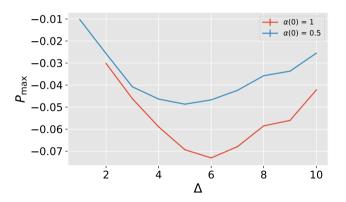
Extracting Energy from One Bath

- \blacktriangleright same model as above eq. (19), but with $L(\tau)=\sin^2(\frac{\Delta}{2}\tau)\sigma_x$
- $lackbox{ how much energy can be } unitarily \ {\rm extracted?} \implies \Delta E_{\rm max} = \frac{1}{\beta} S\!\left(
 ho_{\rm S} \, \middle\| \,
 ho_{\rm S}^{\beta}
 ight)$



Extracting Energy from One Bath

- \blacktriangleright same model as above eq. (19), but with $L(\tau)=\sin^2(\frac{\Delta}{2}\tau)\sigma_x$
- $lackbox{ how much energy can be } unitarily \mbox{ extracted? } \Longrightarrow \Delta E_{\max} = \frac{1}{\beta} S(\rho_{\rm S} \, \Big| \, \rho_{\rm S}^{\beta})$



Introduction

Motivation
Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shove

Otto Cycle

Anti-Zeno Engine

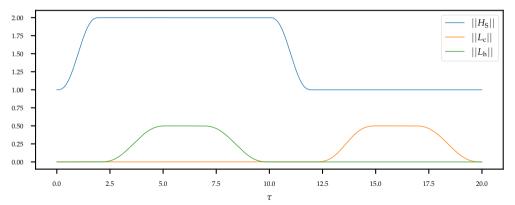
Outlook

Otto Cycle (proof of concept)

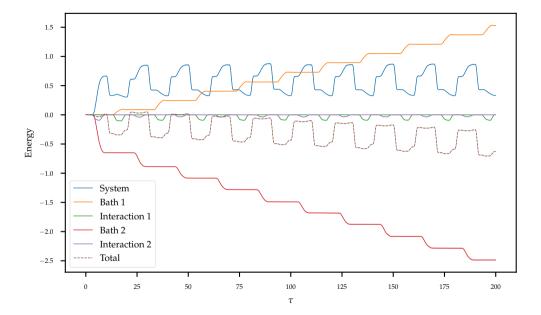
Mode

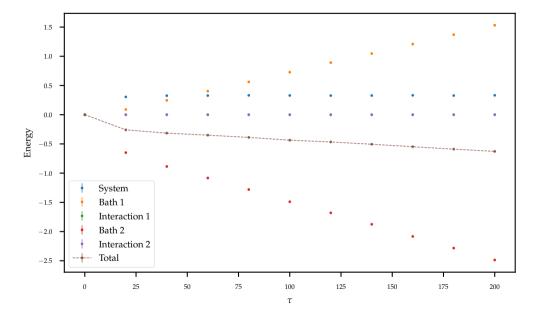
Spin-Boson model with compression of $H_{\rm S}$ and modulation of L.

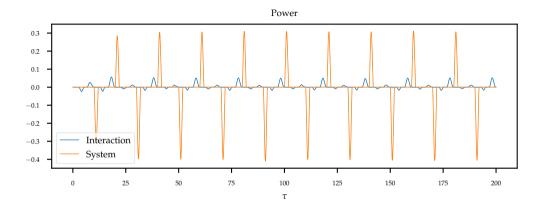
classical toy model of the quantum heat engine community⁶



 $^{^6}$ Geva and Kosloff, "A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid".







- $\bar{P} = 1.98 \cdot 10^{-3} \pm 2.3 \cdot 10^{-5}$, $\eta \approx 20\%$, $T_c = 1$, $T_h = 20$
- > no tuning of parameters, except for resonant coupling
- long bath memory $\omega_c = 1$, but weak-ish coupling

Questions (for the future)

- better performance through "overlapping" phases?
- strong coupling any good?
- non-Markovianity + strong coupling any good?
- what is the optimal efficiency and power? (probably no advantage here)

Introduction

Motivation Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle

Anti-Zeno Engine

Outlook

Anti-Zeno Engine

Question

Is there a use for non-Markovianity in quantum heat engines?

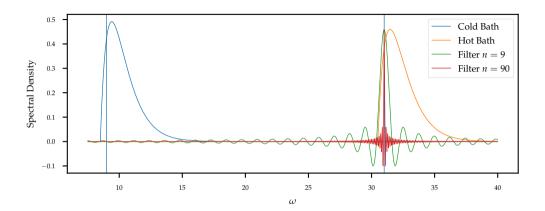
▶ Mukherjee, Kofman, and Kurizki, "Anti-Zeno quantum advantage in fast-driven heat machines" claims that one can exploit the time-energy uncertainty for quantum advantage⁷

Mode

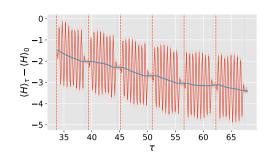
Qubit coupled to two baths of different temperatures (T_c, T_h)

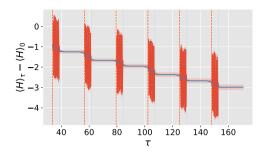
$$H_{\rm S} = \frac{1}{2} [\omega_0 + \gamma \Delta \sin(\Delta t)] \sigma_z, \ L_{c,h} = \frac{1}{2} \sigma_x \tag{20}$$

 $^{^{7}\}text{I'd}$ be careful to call this quantum advantage.



- \triangleright couple for n modulation periods slightly of resonance
- ▶ for smaller n the $\sin((\omega-(\omega_0\pm\Delta))\tau)/((\omega-(\omega_0\pm\Delta))\tau)$ has a greater overlap \implies controls power output





a)
$$P = -0.058 \pm 0.014$$

b)
$$P = -0.068 \pm 0.010$$

Parameters

$$\Delta=11$$
 , $\gamma=0.5$, $\alpha(0)=1.0$, $\omega_0=20$, $T_c=8$, $T_h=40$

- b this is not properly converged yet → newer results: no advantage at these temperatures / coupling strengths
- lacktriangle new simulations with temperatures from paper $(eta_{h(c)}=0.0005(0.005))$ are promising
 - lacktriangle interesting o no good steady state power in this case (insufficient samples?)

Introduction

Motivation
Technical Basics

Bath and Interaction Energy

A Little (more) Theory Analytic Verification

Applications

One Bath Energy Shovel Otto Cycle Anti-Zeno Engine

Outlook

On the "To Do" List

- verify/falsify weak coupling results in the literature (engines)
- three-level systems: there is an experimental paper;)
- parameter scan of two qubit model
- filter modes
- ..

Lessons Learned

- careful convergence checks pay off
- surveying literature is important
- properly documenting observations is a great help and should be done as early as possible
- applications should be carefully chosen to answer interesting questions
- numerics are helpful, but physical insights are important
- comparison with some experiments would have been nice

References I

- Bera, Mohit Lal, Sergi Juli-Farr, et al. "Quantum Heat Engines with Carnot Efficiency at Maximum Power". In: arXiv (June 2021). eprint: 2106.01193. URL: https://arxiv.org/abs/2106.01193v1.
- Bera, Mohit Lal, Maciej Lewenstein, and Manabendra Nath Bera. "Attaining Carnot efficiency with quantum and nanoscale heat engines npj Quantum Information". In: npj Quantum Inf. 7.31 (Feb. 2021), pp. 1–7. ISSN: 2056-6387. DOI: 10.1038/s41534-021-00366-6.
- Disi, L., N. Gisin, and W. T. Strunz. "Non-Markovian quantum state diffusion". In: *Phys. Rev. A* 58.3 (Sept. 1998), pp. 1699–1712. ISSN: 2469-9934. DOI: 10.1103/PhysRevA.58.1699.
- Esposito, Massimiliano, Maicol A. Ochoa, and Michael Galperin. "Nature of heat in strongly coupled open quantum systems". In: *Phys. Rev. B* 92.23 (Dec. 2015), p. 235440. ISSN: 2469-9969. DOI: 10.1103/PhysRevB.92.235440.
- Gao, Xing et al. "Non-Markovian Stochastic Schr\"odinger Equation: Matrix Product State Approach to the Hierarchy of Pure States". In: arXiv (Sept. 2021). eprint: 2109.06393. URL: https://arxiv.org/abs/2109.06393v3.

References II

- Geva, Eitan and Ronnie Kosloff. "A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid". In: *J. Chem. Phys.* 96.4 (Feb. 1992), pp. 3054–3067. ISSN: 0021-9606. DOI: 10.1063/1.461951.
- Kato, Akihito and Yoshitaka Tanimura. "Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines". In: *J. Chem. Phys.* 145.22 (Dec. 2016), p. 224105. ISSN: 0021-9606. DOI: 10.1063/1.4971370.
- ."Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence". In: *J. Chem. Phys.* 143.6 (Aug. 2015), p. 064107. ISSN: 0021-9606. DOI: 10.1063/1.4928192.
- Klauder, JR and ECG Sudarshan. "Fundamentals of Quantum Optics Benjamin". In: *Inc.*, New York (1968).
- Motz, T. et al. "Rectification of heat currents across nonlinear quantum chains: a versatile approach beyond weak thermal contact". In: *New J. Phys.* 20.11 (Nov. 2018), p. 113020. ISSN: 1367-2630. DOI: 10.1088/1367-2630/aaea90.
- Mukherjee, Victor, Abraham G. Kofman, and Gershon Kurizki. "Anti-Zeno quantum advantage in fast-driven heat machines". In: *Commun. Phys.* 3.8 (Jan. 2020), pp. 1–12. ISSN: 2399-3650. DOI: 10.1038/s42005-019-0272-z.

References III

- Rivas, ngel. "Strong Coupling Thermodynamics of Open Quantum Systems". In: arXiv (Oct. 2019). DOI: 10.1103/PhysRevLett.124.160601. eprint: 1910.01246.
- Senior, Jorden et al. "Heat rectification via a superconducting artificial atom Communications Physics". In: Commun. Phys. 3.40 (Feb. 2020), pp. 1–5. ISSN: 2399-3650. DOI: 10.1038/s42005-020-0307-5.
- Strasberg, Philipp and Andreas Winter. "First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy". In: *PRX Quantum* 2.3 (Aug. 2021), p. 030202. ISSN: 2691-3399. DOI: 10.1103/PRXQuantum.2.030202.
- Strunz, Walter T. "Stochastic Schrödinger equation approach to the dynamics of non-Markovian open quantum systems". Fachbereich Physik der Universität Essen, 2001.
- Talkner, Peter and Peter Hnggi. "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical". In: Rev. Mod. Phys. 92.4 (Oct. 2020), p. 041002. ISSN: 1539-0756. DOI: 10.1103/RevModPhys.92.041002.
- ."Open system trajectories specify fluctuating work but not heat". In: *Phys. Rev. E* 94.2 (Aug. 2016), p. 022143. ISSN: 2470-0053. DOI: 10.1103/PhysRevE.94.022143.

References IV

Wiedmann, M., J. T. Stockburger, and J. Ankerhold. "Non-Markovian dynamics of a quantum heat engine: out-of-equilibrium operation and thermal coupling control". In: *New J. Phys.* 22.3 (Mar. 2020), p. 033007. ISSN: 1367-2630. DOI: 10.1088/1367-2630/ab725a.

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"\text{small"}} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"\text{big", simple}}$$
(21)

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium:

Consider an open quantum system

$$H = \underbrace{H_{S}}_{\text{"small"}} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{\text{"big", simple}}$$
(21)

with $[H_S, H_B] = 0$.

• weak coupling $H_{\rm I}\approx 0$ thermodynamics⁸ of open systems are somewhat understood⁹

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium:

Consider an open quantum system

$$H = \underbrace{H_{S}}_{\text{"small"}} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{\text{"big", simple}}$$
 (21)

- \blacktriangleright weak coupling $H_{\rm I} pprox 0$ thermodynamics⁸ of open systems are somewhat understood⁹
- > strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"\text{small"}} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"\text{big", simple}}$$
(21)

- lacktriangle weak coupling $H_{
 m I}pprox 0$ thermodynamics 8 of open systems are somewhat understood 9
- > strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- ▶ we do quantum mechanics ⇒ can't separate bath and system

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Consider an open quantum system

$$H = \underbrace{H_{S}}_{"\text{small}"} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{"\text{big", simple}}$$
(21)

- lacktriangle weak coupling $H_{
 m I}pprox 0$ thermodynamics 8 of open systems are somewhat understood 9
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- ▶ we do quantum mechanics ⇒ can't separate bath and system, especially not dynamics!

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Consider an open quantum system

$$H = \underbrace{H_{S}}_{\text{"small"}} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{\text{"big", simple}}$$
 (21)

- lacktriangle weak coupling $H_{
 m I}pprox 0$ thermodynamics 8 of open systems are somewhat understood 9
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- \blacktriangleright we do quantum mechanics \Longrightarrow can't separate bath and system, especially not dynamics!
- no consensus about strong coupling thermodynamics:

⁸even in strong coupling equilibrium...

⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

Consider an open quantum system

$$H = \underbrace{H_{S}}_{\text{"small"}} + \underbrace{H_{I}}_{?} + \underbrace{H_{B}}_{\text{"big", simple}}$$
 (21)

- lacktriangle weak coupling $H_{
 m I}pprox 0$ thermodynamics 8 of open systems are somewhat understood 9
- ▶ strong coupling: $\langle H_{\rm I} \rangle \sim \langle H_{\rm S} \rangle \implies$ we can't neglect the interaction \implies thermodynamics?
- \blacktriangleright we do quantum mechanics \implies can't separate bath and system, especially not dynamics!
- no consensus about strong coupling thermodynamics:
- \blacktriangleright but what is clear: need to get access to exact dynamics of $H_{\rm I}, H_{\rm B}$

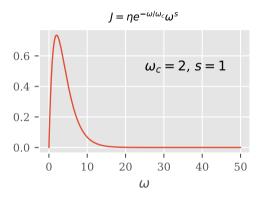
⁸even in strong coupling equilibrium...

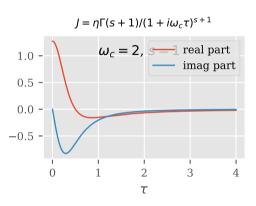
⁹Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems"; Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical".

More Papers on Thermo

M. L. Bera, Juli-Farr, et al., "Quantum Heat Engines with Carnot Efficiency at Maximum Power": M. L. Bera, Lewenstein, and M. N. Bera, "Attaining Carnot efficiency with quantum and nanoscale heat engines - npj Quantum Information"; Esposito, Ochoa, and Galperin, "Nature of heat in strongly coupled open quantum systems"; Kato and Tanimura, "Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines", "Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence"; Motz et al., "Rectification of heat currents across nonlinear quantum chains: a versatile approach beyond weak thermal contact"; Rivas, "Strong Coupling Thermodynamics of Open Quantum Systems": Senior et al., "Heat rectification via a superconducting artificial atom - Communications Physics"; Strasberg and Winter, "First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy": Talkner and Hnggi, "Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical", "Open system trajectories specify fluctuating work but not heat": Wiedmann, Stockburger, and Ankerhold, "Non-Markovian dynamics of a quantum heat engine: out-of-equilibrium operation and thermal coupling control"

Ohmic SD BCF





NMQSD (Zero Temperature)

Expanding in a Bargmann (unnormalized) coherent state basis Klauder and Sudarshan, "Fundamentals of Quantum Optics Benjamin" $\left\{|\mathbf{z}^{(1)},\mathbf{z}^{(2)},...\right\rangle=|\underline{\mathbf{z}}\rangle\right\}$

$$|\psi(t)\rangle = \int \prod_{n=1}^{N} \left(\frac{d\mathbf{z}^{(n)}}{\pi^{N_n}} e^{-|\mathbf{z}|^2}\right) |\psi(t, \underline{\mathbf{z}}^*)\rangle |\underline{\mathbf{z}}\rangle, \qquad (22)$$

we obtain

$$\partial_t \psi_t(\mathbf{\eta}_t^*) = -iH\psi_t(\mathbf{\eta}_t^*) + \mathbf{L} \cdot \mathbf{\eta}_t^* \psi_t(\mathbf{\eta}_t^*) - \sum_{n=1}^N L_n^\dagger \int_0^t \mathrm{d}s \, \alpha_n(t-s) \frac{\delta \psi_t(\mathbf{\eta}_t^*)}{\delta \eta_n^*(s)}, \tag{23}$$

with

$$\mathcal{M}(\eta_n^*(t)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)) = 0, \quad \mathcal{M}(\eta_n(t)\eta_m(s)^*) = \delta_{nm}\alpha_n(t-s), \tag{24}$$

where $\alpha_n(t-s)=\sum_{\lambda}\left|g_{\lambda}^{(n)}\right|^2\mathrm{e}^{-i\omega_{\lambda}^{(n)}(t-s)}=\left\langle B(t)B(s)\right\rangle_{I,\rho(0)}$ Walter T. Strunz, "Stochastic Schrödinger equation approach to the dynamics of non-Markovian open quantum systems" (fourier transf. of spectral density $J(\omega)=\pi\sum_{\lambda}\left|g_{\lambda}\right|^2\delta(\omega-\omega_{\lambda})$).

Fock-Space Embedding

As in Gao et al., "Non-Markovian Stochastic Schr $\$ "odinger Equation: Matrix Product State Approach to the Hierarchy of Pure States" we can define

$$|\Psi\rangle = \sum_{\mathbf{k}} |\psi^{\underline{\mathbf{k}}}\rangle \otimes |\underline{\mathbf{k}}\rangle \tag{25}$$

where $|\underline{\mathbf{k}}\rangle = \bigotimes_{n=1}^{N} \bigotimes_{\mu=1}^{N_n} |\underline{\mathbf{k}}_{n,\mu}\rangle$ are bosonic Fock-states. Now eq. (6) becomes

$$\partial_{t} |\Psi\rangle = \left[-iH_{S} + \mathbf{L} \cdot \mathbf{\eta}^{*} - \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} b_{n,\mu}^{\dagger} b_{n,\mu} W_{\mu}^{(n)} + i \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} \sqrt{G_{n,\mu}} \left(b_{n,\mu}^{\dagger} L_{n} + b_{n,\mu} L_{n}^{\dagger} \right) \right] |\Psi\rangle.$$
(26)

Fock-Space Embedding

As in Gao et al., "Non-Markovian Stochastic Schr $\$ "odinger Equation: Matrix Product State Approach to the Hierarchy of Pure States" we can define

$$|\Psi\rangle = \sum_{\mathbf{k}} |\psi^{\underline{\mathbf{k}}}\rangle \otimes |\underline{\mathbf{k}}\rangle$$
 (25)

where $|\underline{\mathbf{k}}\rangle=\bigotimes_{n=1}^N\bigotimes_{\mu=1}^{N_n}\left|\underline{\mathbf{k}}_{n,\mu}\right\rangle$ are bosonic Fock-states. Now eq. (6) becomes

$$\partial_{t} |\Psi\rangle = \left[-iH_{S} + \mathbf{L} \cdot \mathbf{\eta}^{*} - \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} b_{n,\mu}^{\dagger} b_{n,\mu} W_{\mu}^{(n)} + i \sum_{n=1}^{N} \sum_{\mu=1}^{M_{n}} \sqrt{G_{n,\mu}} \left(b_{n,\mu}^{\dagger} L_{n} + b_{n,\mu} L_{n}^{\dagger} \right) \right] |\Psi\rangle.$$
(26)

 \implies possible to derive an upper bound for the norm of $\ket{\psi^{f k}}$

Fock-Space Embedding

As in Gao et al., "Non-Markovian Stochastic Schr $\$ "odinger Equation: Matrix Product State Approach to the Hierarchy of Pure States" we can define

$$|\Psi\rangle = \sum_{\mathbf{k}} |\psi^{\underline{\mathbf{k}}}\rangle \otimes |\underline{\mathbf{k}}\rangle \tag{25}$$

where $|\underline{\bf k}\rangle=\bigotimes_{n=1}^N\bigotimes_{\mu=1}^{N_n}\left|\underline{\bf k}_{n,\mu}\right\rangle$ are bosonic Fock-states. Now eq. (6) becomes

$$\partial_{t}\left|\Psi\right\rangle = \left[-iH_{\mathrm{S}} + \mathbf{L}\cdot\mathbf{\eta}^{*} - \sum_{n=1}^{N}\sum_{\mu=1}^{M_{n}}b_{n,\mu}^{\dagger}b_{n,\mu}W_{\mu}^{(n)} + i\sum_{n=1}^{N}\sum_{\mu=1}^{M_{n}}\sqrt{G_{n,\mu}}\left(b_{n,\mu}^{\dagger}L_{n} + b_{n,\mu}L_{n}^{\dagger}\right)\right]\left|\Psi\right\rangle. \tag{26}$$

 \implies possible to derive an upper bound for the norm of $|\psi^{\underline{\mathbf{k}}}\rangle$ \implies new truncation scheme