\documentclass[fontsize=12pt,paper=a4, captions=nooneline,captions=tableabove,english,final,parskip=none,titlepage=false]{scrartcl} \usepackage[% paper=a4paper, top=30mm, bottom=25mm, left=25mm, right=25mm, ]{geometry} \pdfvariable suppressoptionalinfo 512\relax \usepackage{../hirostyle} \usepackage{../hiromacros} \setmainfont{Liberation Sans} \usepackage[list=true, font=footnotesize, labelformat=brace]{subcaption} \addbibresource{references.bib} \renewcommand*{\titlepagestyle}{empty} \begin{document} \pagenumbering{gobble} \begin{center} \Large Calculating Energy Flows in Strongly Coupled Open Quantum Systems with HOPS \vspace{16pt} % Author names and affiliations \small \underline{Valentin Boettcher}$^1$, Richard Hartmann$^1$, Konstantin Beyer$^1$, Walter Strunz$^1$ \\ $^1$ Institute for Theoretical Physics, Dresden, Germany\\ E-mail: \texttt{valentin.boettcher@tu-dresden.de}\\ \vspace{8pt} \end{center} \normalsize The hierarchy of pure states (HOPS~\cite{Hartmann2017Dec,Diosi1998Mar}) is a general purpose stochastic numerical framework for the exact simulation of non-Markovian strongly coupled open systems. Without modification of the core method, it is possible to calculate the interaction energy and the bath energy change. This is due to HOPS' foundation on the global dynamics of the system and the bath in contrast to master-equation methods. We extended the result in \refcite{Kato2016Dec} for the Hierarchical Equations Of Motion method to arbitrary modulations of system and coupling inheriting all the advantages of the HOPS method. We present the basic theory and its application to simple driven spin-boson like systems, as well as a comparison with an exact solution for a quantum Brownian motion like model. \begin{figure}[H] \centering \subcaptionbox{Comparison of the bath energy change \(J_i=-∂_t\ev{H_{B,i}}\) for two harmonic oscillators coupled to two baths and each other.}{\input{./figs/poster_abstract/flow_comp.pgf}} \subcaptionbox{Total energy and interaction energy for a qubit coupled to a bath with long correlation time under fast modulation.} {\input{./figs/poster_abstract/energy_shovel_preview.pgf}} \end{figure} \printbibliography{} \end{document}