mirror of
https://github.com/vale981/master-thesis-tex
synced 2025-03-04 09:11:38 -05:00
final shortening of the talk
This commit is contained in:
parent
074c747495
commit
5972664d43
1 changed files with 68 additions and 49 deletions
|
@ -151,8 +151,6 @@ labelformat=brace, position=top]{subcaption}
|
|||
\end{block}
|
||||
\pause{}
|
||||
\begin{itemize}[<+->]
|
||||
\item won't call this \emph{heat-flow} because it isn't
|
||||
\emph{the} thermodynamic heat flow
|
||||
\item nevertheless: may be interesting \emph{qualitative} measure
|
||||
for energy flow
|
||||
\end{itemize}
|
||||
|
@ -176,6 +174,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\item \(B_n=∑_{λ} g_λ\nth a_λ\nth\).
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{What remains of the Bath?}
|
||||
\begin{block}{Bath Correlation Function}
|
||||
\[α(t-s) = \ev{B(t)B(s)} \qty(\overset{T=0}{=} ∑_λ
|
||||
|
@ -191,6 +190,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\end{itemize}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
|
||||
% \begin{frame}
|
||||
% \begin{tikzpicture}
|
||||
% \def\xmin{-.9}
|
||||
|
@ -215,46 +215,8 @@ labelformat=brace, position=top]{subcaption}
|
|||
% \end{frame}
|
||||
|
||||
|
||||
\begin{frame}{NMQSD (Zero Temperature)}
|
||||
Open system dynamics formulated as a \emph{stochastic} differential equation:
|
||||
\begin{equation}
|
||||
\label{eq:multinmqsd}
|
||||
∂_t\ket{ψ_t(\vb{η}^\ast_t)} = -\iu H(t) \ket{ψ_t(\vb{η}^\ast_t)} +
|
||||
\vb{L}\cdot\vb{η}^\ast_t\ket{ψ_t(\vb{η}^\ast_t)} - ∑_{n=1}^N L_n^†(t)∫_0^t\dd{s}α_n(t-s)\fdv{\ket{ψ_t(\vb{η}^\ast_t)}}{η^\ast_n(s)},
|
||||
\end{equation}
|
||||
with
|
||||
\begin{equation}
|
||||
\label{eq:processescorr}
|
||||
\begin{aligned}
|
||||
\mathcal{M}(η_n(t)) &=0, & \mathcal{M}(η_n(t)η_m(s)) &= 0,
|
||||
& \mathcal{M}(η_n(t)η_m(s)^\ast) &= δ_{nm}α_n(t-s),
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
by projecting on coherent bath states.\footnote{For details see:
|
||||
\cite{Diosi1998Mar}}
|
||||
|
||||
System state can be recovered by averaging over \(η\)
|
||||
\begin{equation}
|
||||
\label{eq:recover_rho}
|
||||
ρ_{\sys}(t) = \tr_{\bath}\bqty{\ketbra{ψ(t)}} =
|
||||
\mathcal{M}_{\vb{η}_{t}^\ast}\bqty{\ketbra{ψ_t(\vb{η}_t)}{ψ_t(\vb{η}^\ast_t)}}.
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{HOPS}
|
||||
Using \(α_n(τ)=∑_{\mu}^{M_n}G_μ\nth\eu^{-W_μ\nth τ}\) we define
|
||||
\begin{equation}
|
||||
\label{eq:dops}
|
||||
D_μ\nth(t) \equiv ∫_0^t\dd{s}G_μ\nth\eu^{-W_μ\nth (t-s)}\fdv{η^\ast_n(s)}
|
||||
\end{equation}
|
||||
and
|
||||
\(
|
||||
D^{\underline{\vb{k}}} \equiv
|
||||
∏_{n=1}^N∏_{μ=1}^{M_n}
|
||||
{\sqrt{\frac{\underline{\vb{k}}_{n,μ}!}{\qty(G\nth_μ)^{\underline{\vb{k}}_{n,μ}}}}
|
||||
\frac{1}{i^{\underline{\vb{k}}_{n,μ}}}}\qty(D_μ\nth)^{\underline{\vb{k}}_{n,μ}}\),
|
||||
\(
|
||||
ψ_{t}^{\kmat} \equiv D^\kmatψ_{t}\)
|
||||
we find
|
||||
\begin{multline}
|
||||
\label{eq:multihops}
|
||||
|
@ -275,14 +237,6 @@ labelformat=brace, position=top]{subcaption}
|
|||
J = - \dv{\ev{H_\bath}}{t} = \ev{L^†∂_t B(t) + L∂_t B^†(t)}_\inter.
|
||||
\end{equation}
|
||||
\pause{} \ldots some manipulations \ldots{}\pause{}
|
||||
\begin{block}{Result (NMQSD)}
|
||||
\begin{equation}
|
||||
\label{eq:final_flow_nmqsd}
|
||||
J(t) = -\i \mathcal{M}_{η^\ast}\bra{\psi(η,
|
||||
t)}L^†\dot{D}_t\ket{\psi(η^\ast,t)} + \cc
|
||||
\end{equation}
|
||||
\end{block}
|
||||
with \(\dot{D}_t = ∫_0^t\dd{s} \dot{\alpha}(t-s)\fdv{η^\ast_s}\).\pause{}
|
||||
\begin{block}{Result (HOPS)}
|
||||
\begin{equation}
|
||||
\label{eq:hopsflowfock}
|
||||
|
@ -396,7 +350,7 @@ labelformat=brace, position=top]{subcaption}
|
|||
\includegraphics{figs/otto/power}
|
||||
\end{figure}
|
||||
\begin{itemize}
|
||||
\item \(\bar{P} = .0025\),
|
||||
\item \(\bar{P} = 0.0025\),
|
||||
\(η\approx 29\%\), \(T_{c}=1\), \(T_{h}=20\)
|
||||
\item no tuning of parameters, except for resonant coupling
|
||||
\item long bath memory \(ω_{c}=1\), but weak-ish coupling
|
||||
|
@ -809,6 +763,71 @@ labelformat=brace, position=top]{subcaption}
|
|||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{What remains of the Bath?}
|
||||
\begin{block}{Bath Correlation Function}
|
||||
\[α(t-s) = \ev{B(t)B(s)} \qty(\overset{T=0}{=} ∑_λ
|
||||
\abs{g_λ}^2\,\eu^{-\iu ω_λ (t-s)})= \frac{1}{π} ∫J(ω) \eu^{-\iu ω
|
||||
t}\dd{ω}\]
|
||||
\end{block}
|
||||
\pause
|
||||
\begin{block}{Spectral Density}
|
||||
\[J(ω) = π ∑_{λ} \abs{g_{λ}}^{2}δ(ω-ω_{λ})\]
|
||||
\begin{itemize}
|
||||
\item in thermodynamic limit \(\to\) smooth function
|
||||
\item here usually: Ohmic SD \(J(ω)=η ω \eu^{-ω/ω_c}\) (think phonons)
|
||||
\end{itemize}
|
||||
\end{block}
|
||||
\end{frame}
|
||||
\begin{frame}{NMQSD (Zero Temperature)}
|
||||
Open system dynamics formulated as a \emph{stochastic} differential equation:
|
||||
\begin{equation}
|
||||
\label{eq:multinmqsd}
|
||||
∂_t\ket{ψ_t(\vb{η}^\ast_t)} = -\iu H(t) \ket{ψ_t(\vb{η}^\ast_t)} +
|
||||
\vb{L}\cdot\vb{η}^\ast_t\ket{ψ_t(\vb{η}^\ast_t)} - ∑_{n=1}^N L_n^†(t)∫_0^t\dd{s}α_n(t-s)\fdv{\ket{ψ_t(\vb{η}^\ast_t)}}{η^\ast_n(s)},
|
||||
\end{equation}
|
||||
with
|
||||
\begin{equation}
|
||||
\label{eq:processescorr}
|
||||
\begin{aligned}
|
||||
\mathcal{M}(η_n(t)) &=0, & \mathcal{M}(η_n(t)η_m(s)) &= 0,
|
||||
& \mathcal{M}(η_n(t)η_m(s)^\ast) &= δ_{nm}α_n(t-s),
|
||||
\end{aligned}
|
||||
\end{equation}
|
||||
by projecting on coherent bath states.\footnote{For details see:
|
||||
\cite{Diosi1998Mar}}
|
||||
|
||||
System state can be recovered by averaging over \(η\)
|
||||
\begin{equation}
|
||||
\label{eq:recover_rho}
|
||||
ρ_{\sys}(t) = \tr_{\bath}\bqty{\ketbra{ψ(t)}} =
|
||||
\mathcal{M}_{\vb{η}_{t}^\ast}\bqty{\ketbra{ψ_t(\vb{η}_t)}{ψ_t(\vb{η}^\ast_t)}}.
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
\begin{frame}{HOPS}
|
||||
Using \(α_n(τ)=∑_{\mu}^{M_n}G_μ\nth\eu^{-W_μ\nth τ}\) we define
|
||||
\begin{equation}
|
||||
\label{eq:dops}
|
||||
D_μ\nth(t) \equiv ∫_0^t\dd{s}G_μ\nth\eu^{-W_μ\nth (t-s)}\fdv{η^\ast_n(s)}
|
||||
\end{equation}
|
||||
and
|
||||
\(
|
||||
D^{\underline{\vb{k}}} \equiv
|
||||
∏_{n=1}^N∏_{μ=1}^{M_n}
|
||||
{\sqrt{\frac{\underline{\vb{k}}_{n,μ}!}{\qty(G\nth_μ)^{\underline{\vb{k}}_{n,μ}}}}
|
||||
\frac{1}{i^{\underline{\vb{k}}_{n,μ}}}}\qty(D_μ\nth)^{\underline{\vb{k}}_{n,μ}}\),
|
||||
\(
|
||||
ψ_{t}^{\kmat} \equiv D^\kmatψ_{t}\)
|
||||
we find
|
||||
\begin{multline}
|
||||
\label{eq:multihops}
|
||||
\dot{ψ}_{t}^\kmat = \qty[-\iu H_\sys(t) + \vb{L}(t)\cdot\vb{η}_{t}^\ast -
|
||||
∑_{n=1}^N∑_{μ=1}^{M_n}\kmat_{n,μ}W\nth_μ]ψ_{t}^\kmat \\+
|
||||
\iu ∑_{n=1}^N∑_{μ=1}^{M_n}\sqrt{G\nth_μ}\qty[\sqrt{\kmat_{n,μ}} L_n(t)ψ_{t}^{\kmat -
|
||||
\mat{e}_{n,μ}} + \sqrt{\qty(\kmat_{n,μ} + 1)} L^†_n(t)ψ_{t}^{\kmat +
|
||||
\mat{e}_{n,μ}} ].
|
||||
\end{multline}
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue