From 4d25d45ee6ae576d5373a61a616de124520a6b8a Mon Sep 17 00:00:00 2001 From: Valentin Boettcher Date: Mon, 11 Jul 2022 11:34:50 +0200 Subject: [PATCH] backup of long theory --- poster/nmqsd_hops_theory.tex | 78 ++++++++++++++++++++++++++++++++++++ 1 file changed, 78 insertions(+) create mode 100644 poster/nmqsd_hops_theory.tex diff --git a/poster/nmqsd_hops_theory.tex b/poster/nmqsd_hops_theory.tex new file mode 100644 index 0000000..9996c5a --- /dev/null +++ b/poster/nmqsd_hops_theory.tex @@ -0,0 +1,78 @@ +\begin{block}{NMQSD/HOPS} + Consider the model of a general quantum system (\(H_\sys(t)\)) + coupled to \(N\) baths + \begin{equation} + \label{eq:generalmodel} + H(t) = H_\sys(t) + ∑_{n=1}^N \qty[L_n^†(t)B_n + \hc] + ∑_{n=1}^NH_B\nth , + \end{equation} + with \(B_n=∑_{λ} g_λ\nth a_λ\nth\) and + \(H_B\nth=∑_λω_λ\nth \qty(b_λ\nth)^\dag b_λ\nth\). Projecting + onto coherent bath states + \begin{equation} + \label{eq:projected} + \ket{ψ(t)} = ∫∏_{n=1}^N{\qty(\frac{\dd{\vb{z}\nth}}{π^{N_n}}\eu^{-\abs{\vb{z}}^2})}\ket{ψ(t,\underline{\vb{z}}^\ast)}\ket{\underline{\vb{z}}} + \end{equation} + leads to \emph{stochastic} Non-Markovian + Quantum State Diffusion (NMQSD) + \begin{equation} + \label{eq:nmqsd} + ∂_tψ_t(\vb{η}^\ast_t) = -\iu H(t) ψ_t(\vb{η}^\ast_t) + + \vb{L}\cdot \vb{η}^\ast_tψ_t(\vb{η}^\ast_t) - ∑_{n=1}^N L(t)_n^†∫_0^t\dd{s}α_n(t-s)\fdv{ψ_t(\vb{η}^\ast_t)}{η^\ast_n(s)}, + \end{equation} + where the + \(α_n(τ) = \ev{B_n(t) B_n(0)} = ∑_λ\abs{g_λ}^2 \eu^{-\iu ω_λ t}\) + {\tiny (interaction picture)} are the bath correlation functions (BCF) + and the \(η_n=(\vb{η})_n\) are complex valued Gaussian processes + with \(\mathcal{M}(η_n(t))=\mathcal{M}(η_n(t)η_n(s))=0\) and + \(\mathcal{M}(η_n(t)η_n^\ast(s))=α_n(t-s)\). The reduced state of + the system is recovered through + \(ρ=\mathcal{M}(ψ_t(\vb{η}^\ast_t)ψ_t^\dag(\vb{η}^\ast_t))\). + + With \(α_n(τ)=∑_{\mu}^{M_n}G_μ\nth\eu^{-W_μ\nth τ}\) we define + \begin{align} + \label{eq:dop} + D_μ\nth(t) &\equiv ∫_0^t\dd{s}G_μ\nth\eu^{-W_μ\nth + (t-s)}\fdv{η^\ast_n(s)} & + D^{\underline{\vb{k}}} &\equiv + ∏_{n=1}^N∏_{μ=1}^{M_n} + {\sqrt{\frac{\underline{\vb{k}}_{n,μ}!}{\qty(G\nth_μ)^{\underline{\vb{k}}_{n,μ}}}} + \frac{1}{\iu^{\underline{\vb{k}}_{n,μ}}}}\qty(D_μ\nth)^{\underline{\vb{k}}_{n,μ}}\\ + ψ^{\underline{\vb{k}}} &\equiv D^{\underline{\vb{k}}}ψ \equiv \braket{\kmat}{Ψ}. + \end{align} + For the Fock-space embedded hierarchy state \(\ket{Ψ}\) we find + \begin{equation} + \label{eq:fockhops} + \begin{aligned} + ∂_t\ket{Ψ} &= \qty[ + \begin{aligned} + -\iu H_\sys + \vb{L}\cdot\vb{η}^\ast &- + ∑_{n=1}^N∑_{μ=1}^{M_n}b_{n,μ}^\dag b_{n,μ} W\nth_μ \\ + &\qquad+ + \iu ∑_{n=1}^N∑_{μ=1}^{M_n} \sqrt{G_{n,μ}} \qty(b^†_{n,μ}L_n + + b_{n,μ}L^†_n) + \end{aligned} + ] \ket{Ψ}. + \end{aligned} + \end{equation} + Truncating the hierarchy depth \(\kmat\) in \cref{eq:fockhops} + yields the numeric method. + + Finite temperature can be dealt with through substituting + \(B(t)\rightarrow B(t)+ξ(t)\) with + \begin{equation} + \label{eq:thermproc} + \begin{aligned} + \mathcal{M}(ξ(t))&=0=\mathcal{M}(ξ(t) ξ(s)) \\ + \mathcal{M}\left(ξ(t) ξ^{*}(s)\right)&=\frac{1}{\pi} ∫_{0}^{∞} + \dd{ω} \bar{n}(\beta ω) J(ω) e^{-{\iu} ω(t-s)} \\ + J(ω)&=π\sum_λ\abs{g_λ}^2δ(w-ω_λ). + \end{aligned} + \end{equation} + See~\cite{Hartmann2017Dec} for details about finite temperatures + and the nonlinear method. + \end{block} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "" +%%% End: